Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Experimental Neurology 2013-Dec

Stroke-induced opposite and age-dependent changes of vessel-associated markers in co-morbid transgenic mice with Alzheimer-like alterations.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Cheryl A Hawkes
Dominik Michalski
Rebecca Anders
Sabine Nissel
Jens Grosche
Ingo Bechmann
Roxana O Carare
Wolfgang Härtig

Mo kle

Abstrè

The pathophysiological concept of ischaemic stroke was recently expanded to a more comprehensive perspective, focussing on the vasculature as well as peri- and juxtavascular cells including astrocytes. Increasing evidence also supports a role of the vasculature in Alzheimer's disease (AD), but causal relationships are poorly understood. The purpose of this study was to examine vascular alterations due to cerebral ischaemia in aged wildtype (WT) mice and in the triple-transgenic (3xTg) mouse model of AD. Three- and 12-month-old WT and 3xTg mice underwent permanent middle cerebral artery occlusion. One day after ischaemia onset, expression of collagen IV and laminin as basement membrane constituents, and Solanum tuberosum lectin (STL) as endothelial marker was quantified in the ischaemic neocortex, striatum and hippocampus. Further, CD31- and aquaporin-4-immunoreactivity served for coverage of endothelium and astrocyte endfeet. Ischaemia resulted in strong upregulation of collagen IV and laminin in the neocortex of 3-month-old WT and 3xTg mice, while STL appeared unaffected. Quantification confirmed collagen IV upregulation in the ischaemic neocortex of 3- and 12-month-old WT and 3xTg mice, whereas striatal changes were limited to young WT mice. However, collagen IV expression in the hippocampus appeared nearly unaltered. Qualitative and quantitative data evidenced more severe degeneration of endothelial cells and astrocyte endfeet in 3xTg mice. In conclusion, this study supports the critical impact of the vasculature in the aged and AD brain by showing an age- and genetic background-dependent response of basement membranes to cerebral ischaemia, and a pronounced endothelial and astrocytic degeneration in the AD-like brain.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge