Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Immunology 2001-Dec

The carboxyl terminus of the granulocyte colony-stimulating factor receptor, truncated in patients with severe congenital neutropenia/acute myeloid leukemia, is required for SH2-containing phosphatase-1 suppression of Stat activation.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
F Dong
Y Qiu
T Yi
I P Touw
A C Larner

Mo kle

Abstrè

The G-CSF receptor transduces signals that regulate the proliferation, differentiation, and survival of myeloid cells. A subgroup of patients with severe congenital neutropenia (SCN) has been shown to harbor mutations in the G-CSF receptor gene that resulted in the truncation of the receptor's carboxyl-terminal region. SCN patients with mutations in the G-CSF receptor gene are predisposed to acute myeloid leukemia. The truncated receptors from SCN/acute myeloid leukemia patients mediate augmented and sustained activation of Stat transcription factors and are accordingly hyperactive in inducing cell proliferation and survival but are defective in inducing differentiation. Little is known about the molecular mechanisms underlying the negative role of the receptor's carboxyl terminus in the regulation of Stat activation and cell proliferation/survival. In this study, we provide evidence that SH2-containing phosphatase-1 (SHP-1) plays a negative regulatory role in G-CSF-induced Stat activation. We also demonstrate that the carboxyl terminus of the G-CSF receptor is required for SHP-1 down-regulation of Stat activation induced by G-CSF. Our results indicate further that this regulation is highly specific because SHP-1 has no effect on the activation of Akt and extracellular signal-related kinase1/2 by G-CSF. The data together strongly suggest that SHP-1 may represent an important mechanism by which the carboxyl terminus of the G-CSF receptor down-regulates G-CSF-induced Stat activation and thereby inhibits cell proliferation and survival in response to G-CSF.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge