Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Proceedings of the National Academy of Sciences of the United States of America 2006-Aug

The cotton fiber zinc-binding domain of cellulose synthase A1 from Gossypium hirsutum displays rapid turnover in vitro and in vivo.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Debora Jacob-Wilk
Isaac Kurek
Patrick Hogan
Deborah P Delmer

Mo kle

Abstrè

Little is known about the assembly and turnover of cellulose synthase complexes commonly called rosettes. Recent work indicates that rosette assembly could involve the dimerization of CesA (cellulose synthase catalytic subunit) proteins regulated by the redox state of the CesA zinc-binding domain (ZnBD). Several studies in the 1980s led to the suggestion that synthase complexes may have very short half-lives in vivo, but no recent work has directly addressed this issue. In the present work, we show that the half-life of cotton fiber GhCesA1 protein is <30 min in vivo, far less than the average membrane protein. We also show that the reduced monomer of GhCesA1 ZnBD is rapidly degraded when exposed to cotton fiber extracts, whereas the oxidized dimer is resistant to degradation. Low rates of degradation activity were detected in vitro by using extracts from fibers harvested during primary cell-wall formation, but activity increased markedly during transition to secondary cell-wall synthesis. In vitro degradation of reduced GhCesA1 ZnBD is inhibited by proteosome inhibitor MG132 and also by E64 and EGTA, suggesting that proteolysis is initiated by cysteine protease activity rather than the proteosome. We used a yeast two-hybrid system to identify a putative cotton fiber metallothionein and to confirm it as a protein that could interact with the GhCesA1 ZnBD. A model is proposed wherein active cellulose synthase complexes contain CesA proteins in dimerized form, and turnover and degradation of the complexes are mediated through reductive zinc insertion by metallothionein and subsequent proteolysis involving a cysteine protease.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge