Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Science 2013-Jan

The proteome response of potato leaves to priming agents and S-nitrosoglutathione.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Magdalena Arasimowicz-Jelonek
Arkadiusz Kosmala
Łukasz Janus
Dariusz Abramowski
Jolanta Floryszak-Wieczorek

Mo kle

Abstrè

The primed mobilization for more potent defense responses to subsequent stress has been shown for many plant species, but there is a growing need to identify reliable molecular markers for this unique phenomenon. In the present study a proteomic approach was used to screen similarities in protein abundance in leaves of primed potato (Solanum tuberosum L.) treated with four well-known inducers of plant resistance, i.e. β-aminobutyric acid (BABA), γ-aminobutyric acid (GABA), Laminarin and 2,6-dichloroisonicotinic acid (INA), respectively. Moreover, to gain insight into the importance of nitric oxide (NO) in primed protein accumulation the potato leaves were supplied by S-nitrosoglutathione (GSNO), as an NO donor. The comparative analysis, using two-dimensional electrophoresis and mass spectrometry, revealed that among 25 proteins accumulated specifically after BABA, GABA, INA and Laminarin treatments, 13 proteins were accumulated also in response to GSNO. Additionally, overlapping proteomic changes between BABA-primed and GSNO-treated leaves showed 5 protein spots absent in the proteome maps obtained in response to the other priming agents. The identified 18 proteins belonged, in most cases, to functional categories of primary metabolism. The selected proteins including three redox-regulated enzymes, i.e. glyceraldehyde 3-phosphate dehydrogenase, carbonic anhydrase, and fructose-bisphosphate aldolase, were discussed in relation to the plant defence responses. Taken together, the overlapping effects in the protein profiles obtained between priming agents, GSNO and cPTIO treatments provide insight indicating that the primed potato exhibits unique changes in the primary metabolism, associated with selective protein modification via NO.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge