Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Cellular Physiology 1983-Aug

The respiration-linked limiting step of tumor cell transition from the non-cycling to the cycling state: its inhibition by oxidizable substrates and its relationships to purine metabolism.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
M Olivotto
R Caldini
M Chevanne
M G Cipolleschi

Mo kle

Abstrè

The recruitment into the cycling state of resting Yoshida AH 130 hepatoma cells was studied with respect to its dependence on respiration in an experimental system wherein the overall energy requirement for this recruitment can be supplied by the glycolytic ATP. The G1-S transition of these cells, unaffected by 2,4-dinitrophenol (DNP) at concentrations which uncouple the respiratory phosphorylation, is impaired either by blocking the electron flow to oxygen by antimycin A or by adding an excess of some oxidizable substrates, chiefly pyruvate and oxalacetate. An experimental analysis, focused on pyruvate activity, showed that the inhibition of cell recruitment into S is not related to the depressing effects of this substrate on aerobic glycolysis of tumor cells, nor is it modified by forcing, in the presence of DNP, pyruvate oxidation through the tricarboxylic acid cycle as well as the overall oxygen consumption. Addition of suitable concentrations of preformed purine bases (mainly adenine), completely removes the block of the G1-S transition produced either by the excess of oxidizable substrates or by antimycin A. These findings indicate the existence of a respiration-linked step in purine metabolism, which restricts the above transition and is equally impaired by blocking the respiratory chain or by saturating it with an excess of reducing equivalents derived from unrelated oxidations. The inhibitory effects of pyruvate and antimycin A can be largely removed by the addition of folate and tetrahydrofolate, suggesting that the respiration-linked restriction point of tumor cell cycling involves the folate metabolism and its connections to purine synthesis.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge