Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant, Cell and Environment 2009-Feb

Tocopherol deficiency in transgenic tobacco (Nicotiana tabacum L.) plants leads to accelerated senescence.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Ali-Reza Abbasi
Alexandra Saur
Peter Hennig
Henning Tschiersch
Mohammad Hajirezaei
Daniel Hofius
Uwe Sonnewald
Lars M Voll

Mo kle

Abstrè

alpha-Tocopherol constitutes the major lipophilic antioxidant in thylakoid membranes, which cooperates with the soluble antioxidant system to alleviate oxidative stress caused by reactive oxygen species (ROS) during oxygenic photosynthesis. Tocopherol accumulates during leaf senescence, indicating the necessity for increased redox buffer capacity in senescent leaves, and tocopherol deficiency has been shown to restrict sugar export from source leaves by inducing callose plugging in the vasculature. We have generated tocopherol-deficient tobacco plants that contain as few as 1% of wild-type (WT) tocopherol in leaves by silencing homogentisate phytyltransferase (HPT). Employing HPT : RNAi plants, we have assessed the importance of tocopherol during leaf senescence and for sugar export. Irrespective of whorl position, the content of free sugars and starch was lower in HPT : RNAi leaves than in WT during the vegetative phase, and no accumulation of callose or a reduction in sugar exudation compared to WT was evident. Based on our observations, we discuss lipid peroxidation as a potential modulator of tocopherol-mediated signalling. Furthermore, senescence was accelerated in lower leaves of HPT transgenics, as indicated by elevated GS1 and reduced rbcS transcript amounts. Oxidative stress was increased in virescent lower source leaves, suggesting that the lack of tocopherol triggers premature senescence.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge