Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Applied Microbiology and Biotechnology 2019-Aug

Two-week administration of engineered Escherichia coli establishes persistent resistance to diet-induced obesity even without antibiotic pre-treatment.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Noura Dosoky
Zhongyi Chen
Yan Guo
Clara McMillan
C Flynn
Sean Davies

Mo kle

Abstrè

Adverse alterations in the composition of the gut microbiota have been implicated in the development of obesity and a variety of chronic diseases. Re-engineering the gut microbiota to produce beneficial metabolites is a potential strategy for treating these chronic diseases. N-acyl-phosphatidylethanolamines (NAPEs) are a family of bioactive lipids with known anti-obesity properties. Previous studies showed that administration of Escherichia coli Nissle 1917 (EcN) engineered with Arabidopsis thaliana NAPE synthase to produce NAPEs imparted resistance to obesity induced by a high-fat diet that persisted after ending their administration. In prior studies, mice were pre-treated with ampicillin prior to administering engineered EcN for 8 weeks in drinking water. If use of antibiotics and long-term administration are required for beneficial effects, implementation of this strategy in humans might be problematic. Studies were therefore undertaken to determine if less onerous protocols could still impart persistent resistance and sustained NAPE biosynthesis. Administration of engineered EcN for only 2 weeks without pre-treatment with antibiotics sufficed to establish persistent resistance. Sustained NAPE biosynthesis by EcN was required as antibiotic treatment after administration of the engineered EcN markedly attenuated its effects. Finally, heterologous expression of human phospholipase A/acyltransferase-2 (PLAAT2) in EcN provided similar resistance to obesity as heterologous expression of A. thaliana NAPE synthase, confirming that NAPEs are the bioactive mediator of this resistance.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge