Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Plant Physiology 2017-11

Variation in relative water content, proline accumulation and stress gene expression in two cowpea landraces under drought.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Zahia Zegaoui
Séverine Planchais
Cécile Cabassa
Reda Djebbar
Ouzna Abrous Belbachir
Pierre Carol

Mo kle

Abstrè

Many landraces of cowpea [Vigna unguiculata (L.) Walp.] are adapted to particular geographical and climatic conditions. Here we describe two landraces grown respectively in arid and temperate areas of Algeria and assess their physiological and molecular responses to drought stress. As expected, when deprived of water cowpea plants lose water over time with a gradual reduction in transpiration rate. The landraces differed in their relative water content (RWC) and whole plant transpiration rate. The landrace from Menia, an arid area, retained more water in adult leaves. Both landraces responded to drought stress at the molecular level by increasing expression of stress-related genes in aerial parts, including proline metabolism genes. Expression of gene(s) encoding proline synthesis enzyme P5CS was up regulated and gene expression of ProDH, a proline catabolism enzyme, was down regulated. Relatively low amounts of proline accumulated in adult leaves with slight differences between the two landraces. During drought stress the most apical part of plants stayed relatively turgid with a high RWC compared to distal parts that wilted. Expression of key stress genes was higher and more proline accumulated at the apex than in distal leaves indicating that cowpea has a non-uniform stress response at the whole plant level. Our study reveals a developmental control of water stress through preferential proline accumulation in the upper tier of the cowpea plant. We also conclude that cowpea landraces display physiological adaptations to water stress suited to the arid and temperate climates in which they are cultivated.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge