Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Functional Plant Biology 2017-Feb

Aluminium-inhibited NO 3- uptake is related to Al-increased H 2 O 2 content and Al-decreased plasma membrane ATPase activity in the root tips of Al-sensitive black soybean

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Dan Yang
Dongjie Chen
Ping Wang
Daihua Jiang
Huini Xu
Xiaolu Pang
Limei Chen
Yongxiong Yu
Kunzhi Li

Mo kle

Abstrè

In this study, Al-sensitive black soybean (Glycine max (L.) Merr.) specimens were treated in Hoagland solutions containing 50-400µM Al for 1-4 days. The measurement for NO3- uptake showed that the NO3- uptake decreased gradually as the Al concentration and treatment time increased, suggesting that Al stress significantly reduced the NO3- uptake by soybean. Under 100-µM Al stress for 4 days, the plasma membrane (PM) ATPase activity (inorganic phosphate (Pi) release), H+ pump activity, phosphorylation of PM ATPase and its interaction with 14-3-3 protein in soybean root tips were all smaller than those in the root tips of control plants. The addition of 150µM Mg2+ in Al treatment solutions significantly alleviated the Al inhibition of NO3- uptake in soybean. The presence of Mg2+ in a 100-µM Al solution pronouncedly enhanced PM ATPase activity, H+ pump activity, phosphorylation of PM ATPase and its interaction with 14-3-3 protein in soybean root tips. The application of 2mM ascorbic acid (AsA, an H2O2 scavenger) in Al treatment solutions significantly decreased Al-inhibited NO3- uptake in soybean. The cotreatment of soybeans with 2mM AsA and 100µM Al significantly reduced H2O2 accumulation and increased the PM ATPase activity, H+ pump activity, phosphorylation of PM H+-ATPase and its interaction with 14-3-3 protein in soybean root tips. The evidence suggested that Al-inhibited NO3- uptake is related to Al-increased H2O2 content and Al-decreased phosphorylation of PM ATPase and its interaction with 14-3-3 protein as well as PM ATPase activity in the root tips of soybean.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge