Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
American Journal of Physiology - Cell Physiology 2020-Jul

Dual-Specificity Phosphatase 29 is Induced During Neurogenic Skeletal Muscle Atrophy and Attenuates Glucocorticoid Receptor Activity in Muscle Cell Culture

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Lisa Cooper
Rita West
Caleb Hayes
David Waddell

Mo kle

Abstrè

Skeletal muscle atrophy is caused by a decrease in muscle size and strength and results from a range of physiological conditions, including denervation, immobilization, corticosteroid exposure and aging. Newly named Dual Specificity Phosphatase 29 (Dusp29) has been identified as a novel neurogenic atrophy-induced gene in skeletal muscle. qPCR analysis revealed that Dusp29 expression is significantly higher in differentiated myotubes compared proliferating myoblasts. To determine how Dusp29 is transcriptionally regulated in skeletal muscle, fragments of the promoter region of Dusp29 were cloned, fused to a reporter gene, and found to be highly inducible in response to ectopic expression of the myogenic regulatory factors, MyoD and myogenin. Furthermore, site-directed mutagenesis of conserved E-box elements within the proximal promoter of Dusp29 rendered a Dusp29 reporter gene unresponsive to MRF overexpression. Additionally, Dusp29, an atypical Dusp also known as Dupd1/Dusp27, was found to attenuate the ERK1/2 branch of the MAP kinase signaling pathway in muscle cells and inhibit muscle cell differentiation when ectopically expressed in proliferating myoblasts. Interestingly, Dusp29 was also found to destabilize AMPK protein while simultaneously enriching the phosphorylated pool of AMPK in muscle cells. Additionally, Dusp29 overexpression resulted in a significant increase in the glucocorticoid receptor (GR) protein and elevation in GR phosphorylation. Finally, Dusp29 was found to significantly impair the ability of the glucocorticoid receptor to function as a transcriptional activator in muscle cells treated with dexamethasone. Identifying and characterizing the function of Dusp29 in muscle provides novel insights into the molecular and cellular mechanisms for skeletal muscle atrophy.

Keywords: atrophy; dual-specificity phosphatase 29; dual-specificity phosphatase and pro isomerase domain containing 1; glucocorticoid receptor; skeletal muscle.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge