Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
American Journal of Clinical Nutrition 2020-Feb

Exopolysaccharides from milk fermented by lactic acid bacteria enhance dietary carotenoid bioavailability in humans in a randomized crossover trial and in rats.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Masashi Morifuji
Satomi Ichikawa
Masami Kitade
Tomoyuki Fukasawa
Yukio Asami
Yuki Manabe
Tatsuya Sugawara

Mo kle

Abstrè

Dietary supplementation with carotenoids can have beneficial health effects, but carotenoids are poorly absorbed.We aimed to evaluate how milk fermented by lactic acid bacteria affects dietary carotenoid bioavailability in humans and rats and to investigate mechanisms by which active components in milk fermented by Lactobacilli enhance dietary carotenoid absorption.Male rats (n = 8/group) were administered β-carotene or β-carotene + fermented milk. Rats (n = 6/group) were also pretreated with ezetimibe, a cholesterol absorption inhibitor, to investigate β-carotene transport mechanisms. In humans, 3 studies were conducted using a randomized crossover method. Subjects (n = 16/study) consumed a vegetable (carrot, tomato, or spinach) drink alone or with a fermented milk drink. Blood samples were collected at various time points after consumption.In rats, the serum β-carotene area under the concentration-time curve (AUC) was significantly higher for the β-carotene + fermented milk than for β-carotene only. A significant correlation (r = 0.83, P < 0.001) between the exopolysaccharide (EPS) content of fermented milk and serum β-carotene AUC was observed. Ezetimibe treatment did not suppress elevations in serum β-carotene concentrations induced by fermented milk ingestion. In humans, the incremental area under the concentration-time curve (iAUC) for β-carotene in the plasma triacylglycerol-rich lipoprotein (TRL) fraction was significantly (1.8-fold, range: 0.6-3.9) higher when carrot + fermented milk was consumed compared with carrot drink alone. A significantly (6.5-fold, range: 0.04-7.7) higher iAUC for lycopene in the plasma TRL fraction was observed for subjects who consumed tomato + fermented milk compared with tomato drink alone. A significant increase in plasma lutein in all fractions was observed after consumption of spinach + fermented milk, but not with spinach drink alone.Co-ingestion of β-carotene and fermented milk significantly increased dietary β-carotene bioavailability in humans and rats. EPSs could affect the physical properties of fermented milk to enhance dietary β-carotene absorption mediated by simple diffusion mechanisms. These findings may be relevant for methods to increase dietary carotenoid bioavailability.This trial was registered at umin.ac.jp/ctr as UMIN000034838, UMIN000034839, and UMIN000034840.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge