Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Microbiology 2020-Jan

The fungal mitochondrial membrane protein, BbOhmm, antagonistically controls hypoxia tolerance.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Zhangjiang He
Xin Zhao
Yifei Gao
Nemat Keyhani
Huifang Wang
Juan Deng
Zhuoyue Lu
Yanze Kan
Zhibing Luo
Yongjun Zhang

Mo kle

Abstrè

Adaptation to low-oxygen environment in host tissues is crucial for microbial pathogens, particuarlly fungi, to successfully infect target hosts. However, the underlying mechanisms responsible for hypoxia tolerance in most pathogens are poorly understood. A mitochondrial protein, BbOhmm, is demonstrated to limit oxidative stress resistance and virulence in the insect fungal pathogen, Beauveria bassiana. Here, we found that BbOhmm negatively affected hypoxic adaptation in the insect haemocoel while regulating respiration-related events, heme synthesis and mitochondrial iron homeostasis. A homologue of the mammalian sterol regulatory element-binding proteins (SREBPs), BbSre1, was shown to be involved in BbOhmm-mediated low-oxygen adaptation. Inactivation of BbSre1 resulted in a significant increase in sensitivity to hypoxic and oxidative stress. Similar to ΔBbOhmm, ΔBbSre1 or the ΔBbOhmmΔBbSre1 double mutant accumulated high levels of heme and mitochondrial iron, regulating the similar pathways during hypoxic stress. BbSre1 transcriptional activity and nuclear import were repressed in ΔBbOhmm cells, and affected by intracellular ROS and oxygen levels. These findings have led to a new model in which BbOhmm affects ROS homeostasis in combination with available oxygen to control the transcriptional activity of BbSre1, which in turn mediates low-oxygen adaptation by regulating mitochondrial iron homeostasis, heme synthesis and respiration-implicated genes. This article is protected by copyright. All rights reserved.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge