Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Inherited Metabolic Disease 2020-Sep

The mitochondrial-targeted reactive species scavenger JP4-039 prevents sulfite-induced alterations in antioxidant defenses, energy transfer and cell death signaling in striatum of rats

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Nícolas Glänzel
Mateus Grings
Nevton da Rosa-Junior
Leila de Carvalho
Al-Walid Mohsen
Peter Wipf
Moacir Wajner
Jerry Vockley
Guilhian Leipnitz

Mo kle

Abstrè

Sulfite oxidase (SO) deficiency is a disorder caused either by isolated deficiency of SO or by defects in the synthesis of its molybdenum cofactor. It is characterized biochemically by tissue sulfite accumulation. Patients present with seizures, progressive neurological damage and basal ganglia abnormalities, the pathogenesis of which is not fully established. Treatment is supportive and largely ineffective. To address the pathophysiology of sulfite toxicity, we examined the effects of intrastriatal administration of sulfite in rats on antioxidant defenses, energy transfer, and mitogen-activated protein kinases (MAPK) and apoptosis pathways in rat striatum. Sulfite administration decreased reduced glutathione concentration and glutathione peroxidase, glucose-6-phosphate dehydrogenase, glutathione S-transferase, and glutathione reductase activities in striatal tissue. Creatine kinase activity, a crucial enzyme for cell energy transfer, was also decreased by sulfite. Superoxide dismutase-1 (SOD1) and catalase (CAT) proteins were increased, while heme oxygenase-1 (HO-1) was decreased. Additionally, sulfite altered phosphorylation of MAPK by decreasing of p38 and increasing of ERK. Sulfite further augmented the content of GSK-3β, Bok and cleaved caspase-3, indicating increased apoptosis. JP4-039 is a mitochondrial-targeted antioxidant that reaches higher intramitochondrial levels than other traditional antioxidants. Intraperitoneal injection of JP4-039 before sulfite administration preserved activity of antioxidant enzymes and CK. It also prevented or attenuated alterations in SOD1, CAT and HO-1 protein content, as well as changes in p38, ERK and apoptosis markers. In sum, oxidative stress and apoptosis induced by sulfite injection are prevented by JP4-039, identifying this molecule as a promising candidate for pharmacological treatment of SO-deficient patients. This article is protected by copyright. All rights reserved.

Keywords: Antioxidant defenses; Apoptosis; JP4-039; Striatum; Sulfite; Sulfite oxidase deficiency.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge