Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

beta aminobutyric acid/arabidopsis

Lyen an sove nan clipboard la
AtikEsè klinikPatant
Paj 1 soti nan 23 rezilta yo

β-Aminobutyric acid (BABA)-induced resistance in Arabidopsis thaliana: link with iron homeostasis.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
β-Aminobutyric acid (BABA) is a nonprotein amino acid inducing resistance in many different plant species against a wide range of abiotic and biotic stresses. Nevertheless, how BABA primes plant natural defense reactions remains poorly understood. Based on its structure, we hypothesized and
Acid rain is a worldwide environmental issue that has seriously destroyed forest ecosystems. As a highly effective and broad-spectrum plant resistance-inducing agent, β-aminobutyric acid could elevate the tolerance of Arabidopsis when subjected to simulated acid rain. Using comparative proteomic

Accumulation patterns of endogenous β-aminobutyric acid during plant development and defense in Arabidopsis thaliana.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
We have recently discovered that β-aminobutyric acid (BABA), a molecule known for its ability to prime defenses in plants, is a natural plant metabolite. However, the role played by endogenous BABA in plants is currently unknown. In this study we investigated the systemic accumulation of BABA during

Dissecting the beta-aminobutyric acid-induced priming phenomenon in Arabidopsis.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Plants treated with the nonprotein amino acid beta-aminobutyric acid (BABA) develop an enhanced capacity to resist biotic and abiotic stresses. This BABA-induced resistance (BABA-IR) is associated with an augmented capacity to express basal defense responses, a phenomenon known as priming. Based on

The priming molecule β-aminobutyric acid is naturally present in plants and is induced by stress.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
The defense system of a plant can be primed for increased defense, resulting in an augmented stress resistance and/or tolerance. Priming can be triggered by biotic and abiotic stimuli, as well as by chemicals such as β-aminobutyric acid (BABA), a nonprotein amino acid considered so far a xenobiotic.

Plant perception of β-aminobutyric acid is mediated by an aspartyl-tRNA synthetase.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Specific chemicals can prime the plant immune system for augmented defense. β-aminobutyric acid (BABA) is a priming agent that provides broad-spectrum disease protection. However, BABA also suppresses plant growth when applied in high doses, which has hampered its application as a crop defense
SUMMARY Induced resistance was studied in the model pathosystem Arabidopsis-Phytophthora brassicae (formerly P. porri) in comparison with the agronomically important late blight disease of potato caused by Phytophthora infestans. For the quantification of disease progress, both Phytophthora species

The xenobiotic beta-aminobutyric acid enhances Arabidopsis thermotolerance.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
The non-protein amino acid beta-aminobutyric acid (BABA) primes Arabidopsis to respond more quickly and strongly to pathogen and osmotic stress. Here, we report that BABA also significantly enhances acquired thermotolerance in Arabidopsis. This thermotolerance was dependent on heat shock protein

beta-Aminobutyric acid-induced protection of Arabidopsis against the necrotrophic fungus Botrytis cinerea.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
The non-protein amino acid beta-aminobutyric acid (BABA) protects numerous plants against various pathogens. Protection of Arabidopsis plants against virulent pathogens involves the potentiation of pathogen-specific defense responses. To extend the analysis of the mode of action of BABA to

L-Glutamine inhibits beta-aminobutyric acid-induced stress resistance and priming in Arabidopsis.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
The non-protein amino acid beta-aminobutyric acid (BABA) enhances Arabidopsis resistance to microbial pathogens and abiotic stresses through potentiation of the Arabidopsis defence responses. In this study, it is shown that BABA induces the stress-induced morphogenic response (SIMR). SIMR is

Potentiation of pathogen-specific defense mechanisms in Arabidopsis by beta -aminobutyric acid.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
The nonprotein amino acids gamma-aminobutyric acid (GABA) and beta-aminobutyric acid (BABA) have known biological effects in animals and plants. Their mode of action has been the object of thorough research in animals but remains unclear in plants. Our objective was to study the mode of action of
Plasma membrane-localized pattern recognition receptors (PRRs) such as FLAGELLIN SENSING2 (FLS2), EF-TU RECEPTOR (EFR), and CHITIN ELICITOR RECEPTOR KINASE1 (CERK1) recognize microbe-associated molecular patterns (MAMPs) to activate pattern-triggered immunity (PTI). A reverse genetics approach on

Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Drought and salt stress tolerance of Arabidopsis (Arabidopsis thaliana) plants increased following treatment with the nonprotein amino acid beta-aminobutyric acid (BABA), known as an inducer of resistance against infection of plants by numerous pathogens. BABA-pretreated plants showed earlier and
Boosted responsiveness of plant cells to stress at the onset of pathogen- or chemically induced resistance is called priming. The chemical β-aminobutyric acid (BABA) enhances Arabidopsis thaliana resistance to hemibiotrophic bacteria through the priming of the salicylic acid (SA) defence response.

The lectin receptor kinase-VI.2 is required for priming and positively regulates Arabidopsis pattern-triggered immunity.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Plant cells can be sensitized toward a subsequent pathogen attack by avirulent pathogens or by chemicals such as β-aminobutyric acid (BABA). This process is called priming. Using a reverse genetic approach in Arabidopsis thaliana, we demonstrate that the BABA-responsive L-type lectin receptor
Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge