Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

cat-scratch disease/arabidopsis

Lyen an sove nan clipboard la
AtikEsè klinikPatant
Paj 1 soti nan 18 rezilta yo
MicroRNAs play crucial roles during the process of plant development under stress conditions. Copper is an essential micronutrient for most organisms and serves as an important redox-active cofactor for various functional proteins. In the present study, we investigated the effects of copper sulfate

Single-stranded nucleic acid binding in Arabidopsis thaliana cold shock protein is cold shock domain dependent.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Cold shock proteins (CSPs) are ancient nucleic acid-binding proteins and well conserved from bacteria to animals as well as plants. In prokaryotes, CSPs possess a single cold shock domain (CSD) while animal CSPs, flanked by N- and C-terminal domains, are commonly named Y-box proteins. Interestingly,
Among the four cold shock domain proteins (CSDPs) identified in Arabidopsis thaliana, it has recently been shown that CSDP1 harboring seven CCHC-type zinc fingers, but not CSDP2 harboring two CCHC-type zinc fingers, function as a RNA chaperone during cold adaptation. However, the structural features
Four genes encoding cold shock domain (CSD) proteins have been identified in salt cress [Thellungiella salsuginea (halophila), an extremophyte currently recognized as a promising model for studying stress tolerance]. The deduced proteins prove highly homologous to those of Arabidopsis thaliana (up

[Identification and nucleotide polymorphisms in Brassica rapa genes coding cold shock domain proteins (CSDP)].

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Full-length BrCSDP2 and BrCSDP4 cold shock gene sequences of Brassica rapa are obtained. It is shown that the isolated genes belong to a group AtCSP2/AtCSP4 of Arabidopsis thaliana and TsCSDP2/TsCSDP4 of Thellungiella salsuginea genes encoding proteins with a cold shock domain (CSD) and two zinc

miR398 and miR395 are involved in response to SO2 stress in Arabidopsis thaliana.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Sulfur dioxide (SO2) is a common air pollutant that has adverse effects on plants. MicroRNAs (miRNAs) are small noncoding RNA that play critical roles in plant development and stress response. In this study, we found that two miRNAs, miR398 and miR395, were differentially expressed in Arabidopsis
Superoxide dismutases (SODs) are important antioxidant enzymes that catalyze the disproportionation of superoxide anion to oxygen and hydrogen peroxide to guard cells against superoxide toxicity. The major pathway for activation of copper/zinc SOD (CSD) involves a copper chaperone for SOD (CCS) and

Different domains control the localization and mobility of LIKE HETEROCHROMATIN PROTEIN1 in Arabidopsis nuclei.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Plants possess a single gene for the structurally related HETEROCHROMATIN PROTEIN1 (HP1), termed LIKE-HP1 (LHP1). We investigated the subnuclear localization, binding properties, and dynamics of LHP1 proteins in Arabidopsis thaliana cells. Transient expression assays showed that tomato (Solanum

miR398 regulation in rice of the responses to abiotic and biotic stresses depends on CSD1 and CSD2 expression

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
MiR398 targets two Cu or Zn superoxide dismutases (CSD1 and CSD2) in Arabidopsis thaliana (L.) Heynh. Here we provide evidence that rice (Oryza sativa L.) miR398 mediates responses to abiotic and biotic stresses through regulating the expression of its target genes, Os-CSD1 and Os-CSD2. Rice plants

Overexpression of AtCSP4 affects late stages of embryo development in Arabidopsis.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Eukaryotic cold shock domain proteins are nucleic acid-binding proteins that are involved in transcription, translation via RNA chaperone activity, RNA editing, and DNA repair during tissue developmental processes and stress responses. Cold shock domain proteins have been functionally implicated in

Arabidopsis cold shock domain protein 2 influences ABA accumulation in seed and negatively regulates germination.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
The cold shock domain (CSD) is the most conserved nucleic acid binding domain and is distributed from bacteria to animals and plants. CSD proteins are RNA chaperones that destabilize RNA secondary structures to regulate stress tolerance and development. AtCSP2 is one of the four CSD proteins in
Copper-zinc superoxide dismutase (CuZnSOD; CSD) is an important antioxidant enzyme for oxidative stress protection. To date, two activation pathways have been identified in many species. One requiring the CCS, Cu chaperone for SOD, to insert Cu and activate CSD (referred to as CCS-dependent

Arabidopsis COLD SHOCK DOMAIN PROTEIN 2 is a negative regulator of cold acclimation.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Bacterial cold shock proteins (CSPs) act as RNA chaperones that destabilize mRNA secondary structures at low temperatures. Bacterial CSPs are composed solely of a nucleic acid-binding domain termed the cold shock domain (CSD). Plant CSD proteins contain an auxiliary domain in addition to the CSD but

Sucrose induction of Arabidopsis miR398 represses two Cu/Zn superoxide dismutases.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
MicroRNAs (miRNAs) are approximately 21-nt RNAs that reduce target accumulation through mRNA cleavage or translational repression. Arabidopsis miR398 regulates mRNAs encoding two copper superoxide dismutase (CSD) enzymes and a cytochrome c oxidase subunit. miR398 itself is down-regulated in response

Ambient temperature enhanced freezing tolerance of Chrysanthemum dichrum CdICE1 Arabidopsis via miR398.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
BACKGROUND ICE (Inducer of CBF Expression) family genes play an important role in the regulation of cold tolerance pathways. In an earlier study, we isolated the gene CdICE1 from Chrysanthemum dichrum and demonstrated that freezing tolerance was enhanced by CdICE1 overexpression. Therefore, we
Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge