Paj 1 soti nan 325 rezilta yo
We investigated how docosahexaenoic acid (DHA) regulated tumor necrosis factor-alpha (TNF-α)-induced senescence and dysfunction in endothelial cells (EC). We used RT-PCR to examine the expression of several genes related to senescence and dysfunction in EC. TNF-α-induced p21 protein levels were
Incorporation of the n-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) but not eicosapentaenoic acid or n-6 arachidonic acid into human umbilical vein endothelial cell (HUVEC) phospholipids dose-dependently reduced tumor necrosis factor-alpha (TNF-alpha)-induced surface expression of
We previously reported that docosahexaenoic acid (DHA) attenuated tumor necrosis factor (TNF)-induced apoptosis in human monocytic U937 cells (J. Nutr. 130: 1095-1101, 2000). In the present study, we examined the effects of DHA and other polyunsaturated fatty acids (PUFA) on TNF-induced necrosis,
The effects of polyunsaturated fatty acids and vitamin E on tumor necrosis factor (TNF)-induced apoptosis of human monocytic U937 cells was explored to assess to what extent these nutrients could attenuate apoptosis. Preincubation of U937 cells with arachidonic acid for 24 h did not affect
BACKGROUND
Increased consumption of n-3 long-chain polyunsaturated fatty acids (PUFAs) has been recommended during pregnancy and lactation. The production of proinflammatory cytokines by human peripheral blood mononuclear cells (PBMCs) can be modified by dietary n-3 PUFAs.
OBJECTIVE
We sought to
Docosahexaenoic acid (DHA) is an essential omega-3 fatty acid known to be neuroprotective in several models of human diseases, including multiple sclerosis. The protective effects of DHA are largely attributed to its ability to interfere with the activity of transcription factors controlling immune
Rationale: Docosahexaenoic acid (DHA) in cell membrane may influence breast cancer (BC) patients' prognosis, affecting tumor cells sensitivity to chemo- and radio-therapy and likely modulating inflammation. The possibility of identifying BC patients presenting with low DHA levels and/or low ability
BACKGROUND
High levels of circulating proinflammatory cytokines are characteristic of inflammaging, a term coined to describe age-related chronic systemic inflammation involved in the etiology of many age-related disorders including nonhealing wounds. Some studies have shown that supplementing diets
Omega-3 polyunsaturated fatty acids (n-3 PUFA) inhibit ultraviolet B (UVB)-induced inflammation and other inflammatory states, in vivo. We examined whether this may be mediated by modulation of interleukin (IL)-8, a chemokine pivotal to skin inflammation induced by UVB, in epidermal and dermal
OBJECTIVE
Adipose tissue inflammation with immune cell recruitment plays a key role in obesity-induced insulin resistance (IR). Long-chain (LC) n-3 polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have anti-inflammatory potential; however, their
Docosahexaenoic acid (DHA) supplementation in pregnancy may confer some clinical benefits; however, this compound can exert pro-oxidant effects. In this study, we investigated the effects of DHA on pro-oxidant/antioxidant balance in term and preterm placental explants, assessing oxidative stress
OBJECTIVE
To test whether breastfeeding's protection against anorectic responses to infection is mediated by n-3 fatty acids' attenuation of interleukin (IL)-1beta and tumor necrosis factor (TNF)alpha.
METHODS
Experimental and observational studies.
METHODS
A hospital-based study was
Accumulating evidence suggested that hyperglycemia played a critical role in hippocampus dysfunction in patients with diabetes mellitus. However, the multifactorial pathogenesis of hyperglycemia-induced impairments of hippocampal neurons has not been fully elucidated. Docosahexaenoic acid (DHA) has
n-3 fatty acids reduce the risk of cardiovascular disease via a number of possible mechanisms. Despite this, there has been concern that these fatty acids may increase lipid peroxidation. The data in vivo are inconclusive, due in part to limitations in the methodologies. In this regard, the
Fatty acids from fish such as docosahexaenoic acid (DHA) are associated with improved brain function, whereas furan fatty acids (FFAs) also found in fish oil at low levels (1%) are thought to have antioxidant properties. Understanding their effects in astrocytes is important as these cells are