Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

galacturonic acid/arabidopsis thaliana

Lyen an sove nan clipboard la
AtikEsè klinikPatant
Paj 1 soti nan 29 rezilta yo
D-Galacturonic acid is the most abundant monosaccharide component of pectic polysaccharides that comprise a significant part of most plant cell walls. Therefore, it is potentially an important nutritional factor for Botrytis cinerea when it grows in and through plant cell walls. The d-galacturonic
The cell wall is a complex and dynamic structure that determines plants' performance by constant remodelling of its compounds. Although cellulose is its major load-bearing component, pectins are crucial to determine wall characteristics. Changes in pectin physicochemical properties, due to pectin

Major changes in the cell wall during silique development in Arabidopsis thaliana.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Fruit development is a highly complex process, which involves major changes in plant metabolism leading to cell growth and differentiation. Changes in cell wall composition and structure play a major role in modulating cell growth. We investigated the changes in cell wall composition and the
Significant cellulose-pectin interactions in plant cell walls have been reported recently based on 2D 13C solid-state NMR spectra of intact cell walls, but how these interactions affect cell growth has not been probed. Here, we characterize two Arabidopsis thaliana lines with altered expression of
UDP-GlcA 4-epimerase (UGlcAE) catalyzes the epimerization of UDP-alpha-D-glucuronic acid (UDP-GlcA) to UDP-alpha-D-galacturonic acid (UDP-GalA). UDP-GalA is a precursor for the synthesis of numerous cell-surface polysaccharides in bacteria and plants. Using a biochemical screen, a gene encoding

Pectin biosynthesis: GALS1 in Arabidopsis thaliana is a β-1,4-galactan β-1,4-galactosyltransferase.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
β-1,4-Galactans are abundant polysaccharides in plant cell walls, which are generally found as side chains of rhamnogalacturonan I. Rhamnogalacturonan I is a major component of pectin with a backbone of alternating rhamnose and galacturonic acid residues and side chains that include α-1,5-arabinans,
• Here, we focused on the biochemical characterization of the Arabidopsis thaliana pectin methylesterase 3 gene (AtPME3; At3g14310) and its role in plant development. • A combination of biochemical, gene expression, Fourier transform-infrared (FT-IR) microspectroscopy and reverse genetics approaches
Galacturonosyltransferase 1 (GAUT1) is an alpha1,4-D-galacturonosyltransferase that transfers galacturonic acid from uridine 5'-diphosphogalacturonic acid onto the pectic polysaccharide homogalacturonan (Sterling et al., 2006). The 25-member Arabidopsis thaliana GAUT1-related gene family encodes 15

Pectin Biosynthesis Is Critical for Cell Wall Integrity and Immunity in Arabidopsis thaliana.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Plant cell walls are important barriers against microbial pathogens. Cell walls of Arabidopsis thaliana leaves contain three major types of polysaccharides: cellulose, various hemicelluloses, and pectins. UDP-D-galacturonic acid, the key building block of pectins, is produced from the precursor

A galacturonic acid-containing xyloglucan is involved in Arabidopsis root hair tip growth.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Root hairs provide a model system to study plant cell growth, yet little is known about the polysaccharide compositions of their walls or the role of these polysaccharides in wall expansion. We report that Arabidopsis thaliana root hair walls contain a previously unidentified xyloglucan that is

Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
L-Ascorbic acid (vitamin C) in fruits and vegetables is an essential component of human nutrition. Surprisingly, only limited information is available about the pathway(s) leading to its biosynthesis in plants. Here, we report the isolation and characterization of GalUR, a gene from strawberry that

Quantitative HPLC-MS analysis of nucleotide sugars in plant cells following off-line SPE sample preparation.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
An analytical workflow was developed for the absolute quantification of uridine diphosphate (UDP)-sugars in plant material in order to compare their metabolism both in wild-type Arabidopsis thaliana and mutated plants (ugd2,3) possessing genetic alterations within the UDP-glucose dehydrogenase genes

L-Gulono-1,4-lactone oxidase expression rescues vitamin C-deficient Arabidopsis (vtc) mutants.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Vitamin C (L-ascorbic acid) has important antioxidant and metabolic functions in both plants and animals, humans have lost the ability to synthesize it. Fresh produce is the major source of vitamin C in the human diet yet only limited information is available concerning its route(s) of synthesis in
The aldo-keto reductase (AKR) superfamily plays a major role in oxidation-reduction in plants. D-galacturonic acid reductase (GalUR), an ascorbic acid (AsA) biosynthetic enzyme, belongs to this superfamily. However, the phylogenetic relationship and evolutionary history of the AKR gene

Probing of the reaction pathway of human UDP-xylose synthase with site-directed mutagenesis.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Uridine 5'-diphosphate (UDP)-xylose (UDP-Xyl) synthase (UXS) catalyzes the oxidative decarboxylation of UDP-glucuronic acid (UDP-GlcUA) to UDP-Xyl. The closely related UDP-glucuronic acid 4-epimerase (UGAE) interconverts UDP-GlcUA and UDP-galacturonic acid (UDP-GalUA) in a highly similar manner via
Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge