Paj 1 soti nan 758 rezilta yo
Spinal muscular atrophy (SMA), a common neuromuscular disorder, is caused by homozygous absence of the survival motor neuron gene 1 (SMN1), while the disease severity is mainly influenced by the number of SMN2 gene copies. This correlation is not absolute, suggesting the existence of yet unknown
Spinal muscular atrophy (SMA) is a severe autosomal recessive motor neuron disease caused by the loss of SMN1, which encodes a protein essential for motor neuron survival. SMA patients have one or more copies of an alternate SMN gene, SMN2, which is nearly identical to SMN1. SMN2 differs at a single
OBJECTIVE
Frontotemporal lobar degeneration (FTLD) is clinically and pathologically heterogeneous. Although associated with variations in MAPT, GRN and C9ORF72, the pathogenesis of these, and of other nongenetic, forms of FTLD, remains unknown. Epigenetic factors such as histone regulation by
Spinal muscular atrophy (SMA), a primarily childhood form of motor neuron disease, is caused by reduced levels of a single, ubiquitously expressed protein: the survival motor neuron (SMN) protein. Low levels of SMN cause motor neuron degeneration but recent reports describe effects of low SMN levels
Skeletal muscle atrophy is commonly associated with immobilization, ageing, and catabolic diseases such as diabetes and cancer cachexia. Epigenetic regulation of gene expression resulting from chromatin remodeling through histone acetylation has been implicated in muscle disuse. The present work was
Proximal spinal muscular atrophy (SMA) is a common autosomal recessively inherited neuromuscular disorder causing infant death in half of all patients. Homozygous loss of the survival motor neuron 1 (SMN1) gene causes SMA, whereas the number of the SMN2 copy genes modulates the severity of the
BACKGROUND
An overproduction of corticosterone during severe sepsis results in increased apoptosis of immune cells, which may result in relative immunosuppression and an impaired ability to fight infections. We have previously demonstrated that administration of tubastatin A, a selective inhibitor
We studied the effect of histone deacetylase 1 (HDAC1) inhibition on titin content and expression of TTN gene in rat m. soleus after 3-day gravitational unloading. Male Wistar rats weighing 210±10 g were randomly divided into 3 groups: control, 3-day hindlimb suspension, and 3-day hindlimb
Recent data have revealed epigenetic derangements and subsequent chromatin remodeling as a potent biologic switch for chronic inflammation and cell survival which are important therapeutic targets in the pathogenesis of several retinal degenerations. Histone deacetylases (HDACs) are a major
Photoreceptors are critical components of the retina and play a role in the first step of the conversion of light to electrical signals. The differentiation and degeneration of photoreceptors are regulated by specific genes and proteins. With the development of epigenetic approaches, scientists have
Sarcopenia, the loss of skeletal muscle mass and function during aging, is a major contributor to disability and frailty in the elderly. Previous studies found a protective effect of reduced histone deacetylase activity in models of neurogenic muscle atrophy. Because loss of muscle mass during aging
Previous studies report that retinitis pigmentosa (RP) patients treated with the histone deacetylase inhibitor (HDACi) valproic acid (VPA) present with improved visual fields and delayed vision loss. However, other studies report poor efficacy and safety of HDACi in other cohorts of retinal
Spinocerebellar ataxia type 7 (SCA7) is characterized by cone-rod dystrophy retinal degeneration and is caused by a polyglutamine [poly(Q)] expansion within ataxin-7, a protein of previously unknown function. Here, we report that ataxin-7 is an integral component of the mammalian STAGA
Histone acetylation regulated by class I histone deacetylases (HDACs) plays a pivotal role in matrix-specific gene transcription and cartilage development. While we previously demonstrated that microRNA (miR)-455-3p is upregulated during chondrogenesis and can enhance early chondrogenesis, the
Among a panel of histone deacetylase (HDAC) inhibitors investigated, suberoylanilide hydroxamic acid (SAHA) evolved as a potent and non-toxic candidate drug for the treatment of spinal muscular atrophy (SMA), an alpha-motoneurone disorder caused by insufficient survival motor neuron (SMN) protein