Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

lutein/arabidopsis

Lyen an sove nan clipboard la
AtikEsè klinikPatant
Paj 1 soti nan 63 rezilta yo

Photoprotection in a zeaxanthin- and lutein-deficient double mutant of Arabidopsis.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
When light absorption by a plant exceeds its capacity for light utilization, photosynthetic light harvesting is rapidly downregulated by photoprotective thermal dissipation, which is measured as nonphotochemical quenching of chlorophyll fluorescence (NPQ). To address the involvement of specific

Dissecting and modeling zeaxanthin- and lutein-dependent nonphotochemical quenching in Arabidopsis thaliana.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Photosynthetic organisms use various photoprotective mechanisms to dissipate excess photoexcitation as heat in a process called nonphotochemical quenching (NPQ). Regulation of NPQ allows for a rapid response to changes in light intensity and in vascular plants, is primarily triggered by a pH

Spectroscopic Properties of Violaxanthin and Lutein Triplet States in LHCII are Independent of Carotenoid Composition.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Chlorophyll triplet excited states are by-products of photosynthetic processes that can indirectly harm biological membranes by forming highly reactive oxygen species. A crucial photoprotective mechanism evolved by plants to counter this threat involves the triplet energy transfer from chlorophylls

The role of lutein in the acclimation of higher plant chloroplast membranes to suboptimal conditions.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Two mutants of Arabidopsis thaliana deficient in lutein have been investigated with respect to their responses to growth under a range of suboptimal conditions. The first mutant, lut1, was enriched in violaxanthin, antheraxanthin, zeaxanthin and zeinoxanthin compared with the wild-type (WT). In the

Functional Characterization of Lycopene Cyclases Illustrates the Metabolic Pathway towards Lutein in Red Algal Seaweeds.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Carotenoids are essential phytonutrients synthesized by all photosynthetic organisms. Acyclic lycopene is the first branching point for carotenoid biosynthesis. Lycopene β- and ε-cyclases (LCYB and LCYE, respectively) catalyze the cyclization of its open ends and direct the metabolic flux into

Engineering the lutein epoxide cycle into Arabidopsis thaliana.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Although sunlight provides the energy necessary for plants to survive and grow, light can also damage reaction centers of photosystem II (PSII) and reduce photochemical efficiency. To prevent damage, plants possess photoprotective mechanisms that dissipate excess excitation. A subset of these
The high light-induced bleaching of photosynthetic pigments and the degradation of proteins of light-harvesting complexes of PSI and PSII were investigated in isolated thylakoid membranes of Arabidopsis thaliana, wt and lutein-deficient mutant lut2, with the aim of unraveling the role of lutein for
Ecologically relevant low UV-B is reported to alter reactive oxygen species metabolism and anti-oxidative systems through an up-regulation of enzymes of the phenylpropanoid pathway. However, little is known about low UV-B-induced changes in carotenoid profile and their impacts on light harvesting
Ultrafast excitation relaxation dynamics and energy-transfer processes in the light-harvesting complex II (LHC II) of Arabidopsis thaliana were examined at physiological temperature using femtosecond time-resolved fluorescence spectroscopy. Energy transfer from lutein to Chl a proceeded with a rate
This study compares Photosystem II (PS II) chlorophyll (Chl) a fluorescence yield changes of Arabidopsis thaliana L. nuclear gene mutants, thoughtfully provided by the authors of Pogson et al. (1998 Proc Natl Acad Sci USA 95: 13324-13329). One single mutant (npq1) inhibits the violaxanthin
BACKGROUND Reactive oxygen species (ROS) are unavoidable by-products of oxygenic photosynthesis, causing progressive oxidative damage and ultimately cell death. Despite their destructive activity they are also signalling molecules, priming the acclimatory response to stress stimuli. RESULTS To
Leaves of avocado (Persea americana) that develop and persist in deep shade canopies have very low rates of photosynthesis but contain high concentrations of lutein epoxide (Lx) that are partially deepoxidized to lutein (L) after 1 h of exposure to 120 to 350 μmol photons m(-2) s(-1), increasing the
Plants protect themselves from excess absorbed light energy through thermal dissipation, which is measured as nonphotochemical quenching of chlorophyll fluorescence (NPQ). The major component of NPQ, qE, is induced by high transthylakoid DeltapH in excess light and depends on the xanthophyll cycle,
The xanthophylls of the light-harvesting complexes of photosystem II (LHCII), zeaxanthin, and lutein are thought to be essential for non-photochemical quenching (NPQ). NPQ is a process of photoprotective energy dissipation in photosystem II (PSII). The major rapidly reversible component of NPQ, qE,

Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lutein, a dihydroxy beta, epsilon-carotenoid, is the predominant carotenoid in photosynthetic plant tissue and plays a critical role in light-harvesting complex assembly and function. To further understand lutein synthesis and function, we isolated four lutein-deficient mutants of Arabidopsis that
Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge