Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

phospholipase d/kansè

Lyen an sove nan clipboard la
AtikEsè klinikPatant
Paj 1 soti nan 84 rezilta yo

Lysophosphatidic acid stimulates phospholipase D activity and cell proliferation in PC-3 human prostate cancer cells.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Phospholipase D (PLD) is activated in mammalian cells in response to a variety of growth factors and may play a role in cell proliferation. Lysophosphatidic acid (LPA) is a bioactive metabolite potentially generated as a result of PLD activation. Two human prostate cancer cell lines, PC-3 and LNCaP,
Phospholipase D (PLD) has been suggested to play an important role in a variety of cellular functions. PLD activity has been shown to be significantly elevated in many tumours and transformed cells, suggesting the possibility that PLD might be involved in tumorigenesis. In this study, we have
Tumour necrosis factor-alpha (TNFalpha) has been reported to induce potent growth inhibition of committed myeloid progenitor cells, whereas it is a potential growth stimulator of human CD34(+)CD38(-) multipotent haematopoietic cells. The present study was aimed at evaluating the respective role of

Phospholipase D and choline kinase: their role in cancer development and their potential as drug targets.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Malignant cells result from the accumulation of genetic alterations that impinge into the components of signal transduction pathways controlling cell growth, differentiation and apoptosis. One of the critical pathways is related to the regulation of the phospholipid homeostasis. The identification

Phospholipase D inhibitor enhances radiosensitivity of breast cancer cells.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Radiation and drug resistance remain the major challenges and causes of mortality in the treatment of locally advanced, recurrent and metastatic breast cancer. Dysregulation of phospholipase D (PLD) has been found in several human cancers and is associated with resistance to anticancer drugs. In the

Novel ketoepoxides block phospholipase D activation and tumor cell invasion.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
The functional significance of phospholipase D (PLD) could most easily be investigated using selective inhibitors. We have isolated a family of fungal metabolites, ketoepoxides, that inhibit chemotactic peptide (formyl-Met-Leu-Phe)-stimulated PLD activation and superoxide generation in granulocytes

Phospholipase D-mediated autophagic regulation is a potential target for cancer therapy.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Autophagy is a catabolic process in which cell components are degraded to maintain cellular homeostasis by nutrient limitations. Defects of autophagy are involved in numerous diseases, including cancer. Here, we demonstrate a new role of phospholipase D (PLD) as a regulator of autophagy. PLD

Proliferative and metastatic roles for Phospholipase D in mouse models of cancer.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Phospholipase D (PLD) activity has been proposed to facilitate multiple steps in cancer progression including growth, metabolism, angiogenesis, and mobility. The canonical enzymes PLD1 and PLD2 enact their diverse effects through hydrolyzing the membrane lipid phosphatidylcholine to generate the

Design of isoform-selective phospholipase D inhibitors that modulate cancer cell invasiveness.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Phospholipase D (PLD) is an essential enzyme responsible for the production of the lipid second messenger phosphatidic acid. Phosphatidic acid participates in both G protein-coupled receptor and receptor tyrosine kinase signal transduction networks. The lack of potent and isoform-selective

Phospholipase D inhibitors reduce human prostate cancer cell proliferation and colony formation.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Phospholipases D1 and D2 (PLD1/2) hydrolyse cell membrane glycerophospholipids to generate phosphatidic acid, a signalling lipid, which regulates cell growth and cancer progression through effects on mTOR and PKB/Akt. PLD expression and/or activity is raised in breast, colorectal, gastric, kidney

Phospholipase C-protein kinase C mediated phospholipase D activation pathway is involved in tamoxifen induced apoptosis.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Tamoxifen (TAM) is the endocrine therapeutic agent the most widely used in the treatment of breast cancer, and it operates primarily through the induction of apoptosis. In this study, we attempted to elucidate the non-ER mediated mechanism behind TAM treatment, involving the phospholipase C-protein
BACKGROUND Acquisition of mesenchymal characteristics confers to breast cancer (BC) cells the capability of invading tissues different from primary tumor site, allowing cell migration and metastasis. Regulators of the mesenchymal-epithelial transition (MET) may represent targets for anticancer

Phosphatidic acid signaling to mTOR: signals for the survival of human cancer cells.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
During the past decade elevated phospholipase D (PLD) activity has been reported in virtually all cancers where it has been examined. PLD catalyzes the hydrolysis of phosphatidylcholine to generate the lipid second messenger phosphatidic acid (PA). While many targets of PA signaling have been
BACKGROUND [Methyl-3H]-choline is a promising new positron emission tomography (PET) agent used for cancer imaging whose mechanism has still not fully been elucidated. In this study, whether [methyl-3H]-choline determined by measuring the activity of choline kinase (ChoK) and phospholipase D (PLD)
The anti-inflammatory activity of the phytoalexin resveratrol (RSV) was evaluated in C5 anaphylatoxin (C5a)-stimulated primary neutrophils and in a mouse model of acute peritonitis. Pretreatment of human and mouse neutrophils with RSV significantly blocked oxidative burst, leukocyte migration,
Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge