Hungarian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chemical Research in Toxicology 2018-Sep

Gas/Particle Partitioning Constants of Nicotine, Selected Toxicants, and Flavor Chemicals in Solutions of 50/50 Propylene Glycol/Glycerol As Used in Electronic Cigarettes.

Csak regisztrált felhasználók fordíthatnak cikkeket
Belépés Regisztrálás
A hivatkozás a vágólapra kerül
James F Pankow
Kilsun Kim
Wentai Luo
Kevin J McWhirter

Kulcsszavak

Absztrakt

For an electronic cigarette (e-cigarette) aerosol with known total particulate matter concentration (TPM, μg/m3), predictions of the fractions of some compound i in the gas and particle phases ( fg, i and fp, i) at equilibrium can be made based on Kp, i (m3/μg), the compound-dependent gas/particle partitioning equilibrium constant. fg, i and fp, i affect the modes and locations of deposition in the respiratory tract. Kp, i depends inversely on (1) the pure compound liquid vapor pressure ( pL, io), (2) mole fraction activity coefficient (ζ i) in the absorbing liquid, and (3) mean molecular weight of the absorbing liquid (MW). Kp, i values were measured at 20 °C for 32 compounds as spiked into simulated e-cigarette liquids prepared as 50/50 mixtures (by weight) of propylene glycol (PG) and glycerol (GL). Kp, i values at 37 °C were estimated. The 32 compounds were nicotine (in free-base form), seven toxicants (propanal, acetone, hydroxyacetone, benzene, toluene, p-xylene, and ethylbenzene), and 24 flavor chemicals (2,3-pentanedione ("acetyl propionyl"), isobutyl acetate, ethyl butyrate, butyl butyrate, isoamyl acetate, 2,3-dimethylpyrazine, 3-methyl-1-butanol, limonene, 2,3,5-trimethylpyrazine, p-cymene, benzaldehyde, ( Z)-3-hexen-1-ol, menthol, 2-acetylpyrrole, benzyl alcohol, methyl salicylate, cinnamaldehyde, methyl anthranilate, (+)-aromadendrene, cinnamyl alcohol, methyl cinnamate, maltol, ethyl maltol, and coumarin). The measured log Kp, i values were found to be generally correlated with literature values of log pL, io; the scatter is caused by variation in ζ i between ∼1 and ∼1000. Kp measurements were attempted, but values were not reported for acetaldehyde, 2,3-butanedione (diacetyl), vanillin, and ethyl vanillin. Acetaldehyde was found to form significant amounts of its cyclic trimer and cyclic tetramer; for diacetyl, the evidence suggested significant amounts of reaction products, possibly hemiketals and ketals with PG/GL, and for vanillin and ethyl vanillin, the Kp values are large and accordingly more difficult to measure. fg values are calculated using a range of Kp and TPM values.

Csatlakozzon
facebook oldalunkhoz

A legteljesebb gyógynövény-adatbázis, amelyet a tudomány támogat

  • Működik 55 nyelven
  • A tudomány által támogatott gyógynövényes kúrák
  • Gyógynövények felismerése kép alapján
  • Interaktív GPS térkép - jelölje meg a gyógynövényeket a helyszínen (hamarosan)
  • Olvassa el a keresésével kapcsolatos tudományos publikációkat
  • Keresse meg a gyógynövényeket hatásuk szerint
  • Szervezze meg érdeklődését, és naprakész legyen a hírkutatással, a klinikai vizsgálatokkal és a szabadalmakkal

Írjon be egy tünetet vagy betegséget, és olvassa el azokat a gyógynövényeket, amelyek segíthetnek, beírhat egy gyógynövényt, és megtekintheti azokat a betegségeket és tüneteket, amelyek ellen használják.
* Minden információ publikált tudományos kutatáson alapul

Google Play badgeApp Store badge