Hungarian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
ACS Omega 2019-Sep

Inhibition of Glycation-Induced Aggregation of Human Serum Albumin by Organic-Inorganic Hybrid Nanocomposites of Iron Oxide-Functionalized Nanocellulose.

Csak regisztrált felhasználók fordíthatnak cikkeket
Belépés Regisztrálás
A hivatkozás a vágólapra kerül
Rubbel Singla
Syed Abidi
Aqib Dar
Amitabha Acharya

Kulcsszavak

Absztrakt

Protein aggregation leads to the transformation of proteins from their soluble form to the insoluble amyloid fibrils and these aggregates get deposited in the specific body tissues, accounting for various diseases. To prevent such an aggregation, organic-inorganic hybrid nanocomposites of iron oxide nanoparticle (NP, ∼6.5-7.0 nm)-conjugated cellulose nanocrystals (CNCs) isolated from Syzygium cumini (SC) and Pinus roxburghii (PR) were chemically synthesized. Transmission electron microscopy (TEM) images of the nanocomposites suggested that the in situ-synthesized iron oxide NPs were bound to the CNC surface in a uniform and regular fashion. The ThT fluorescence assay together with 8-anilino-1-naphthalenesulfonic acid, Congo Red, and CD studies suggested that short fiber-based SC nanocomposites showed better inhibition as well as dissociation of human serum albumin aggregates. The TEM and fluorescence microscopy studies supported similar observations. Native polyacrylamide gel electrophoresis results documented dissociation of higher protein aggregates in the presence of the developed nanocomposite. Interestingly, the dissociated proteins retained their biological function by maintaining a high amount of α-helix content. The in vitro studies with HEK-293 cells suggested that the developed nanocomposite reduces aggregation-induced cytotoxicity by intracellular reactive oxygen species scavenging and maintaining the Ca2+ ion-channel. These results indicated that the hybrid organic-inorganic nanocomposite, with simultaneous sites for hydrophobic and hydrophilic interactions, tends to provide a larger surface area for nanocomposite-protein interactions, which ultimately disfavors the nucleation step for fibrillation for protein aggregates.

Csatlakozzon
facebook oldalunkhoz

A legteljesebb gyógynövény-adatbázis, amelyet a tudomány támogat

  • Működik 55 nyelven
  • A tudomány által támogatott gyógynövényes kúrák
  • Gyógynövények felismerése kép alapján
  • Interaktív GPS térkép - jelölje meg a gyógynövényeket a helyszínen (hamarosan)
  • Olvassa el a keresésével kapcsolatos tudományos publikációkat
  • Keresse meg a gyógynövényeket hatásuk szerint
  • Szervezze meg érdeklődését, és naprakész legyen a hírkutatással, a klinikai vizsgálatokkal és a szabadalmakkal

Írjon be egy tünetet vagy betegséget, és olvassa el azokat a gyógynövényeket, amelyek segíthetnek, beírhat egy gyógynövényt, és megtekintheti azokat a betegségeket és tüneteket, amelyek ellen használják.
* Minden információ publikált tudományos kutatáson alapul

Google Play badgeApp Store badge