Hungarian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biotechnology and Bioengineering 2012-Apr

Prolonged conversion of n-butyrate to n-butanol with Clostridium saccharoperbutylacetonicum in a two-stage continuous culture with in-situ product removal.

Csak regisztrált felhasználók fordíthatnak cikkeket
Belépés Regisztrálás
A hivatkozás a vágólapra kerül
Hanno Richter
Nasib Qureshi
Sebastian Heger
Bruce Dien
Michael A Cotta
Largus T Angenent

Kulcsszavak

Absztrakt

n-Butanol was produced continuously in a two-stage fermentor system with integrated product removal from a co-feed of n-butyric acid and glucose. Glucose was always required as a source of ATP and electrons for the conversion of n-butyrate to n-butanol and for biomass growth; for the latter it also served as a carbon source. The first stage generated metabolically active planktonic cells of Clostridium saccharoperbutylacetonicum strain N1-4 that were continuously fed into the second (production) stage; the volumetric ratio of the two fermentors was 1:10. n-Butanol was removed continuously from the second stage via gas stripping. Implementing a two-stage process was observed to dramatically dampen metabolic oscillations (i.e., periodical changes of solventogenic activity). Culture degeneration (i.e., an irreversible loss of solventogenic activity) was avoided by periodical heat shocking and re-inoculating stage 1 and by maintaining the concentration of undissociated n-butyric acid in stage 2 at 3.4 mM with a pH-auxostat. The system was successfully operated for 42 days during which 93% of the fed n-butyrate was converted to n-butanol at a production rate of 0.39 g/(L × h). The molar yields Y(n-butanol/n-butyrate) and Y(n-butanol/glucose) were 2.0, and 0.718, respectively. For the same run, the molar ratio of n-butyrate to glucose consumed was 0.358. The molar yield of carbon in n-butanol produced from carbon in n-butyrate and glucose consumed (Y(n-butanol/carbon) ) was 0.386. These data illustrate that conversion of n-butyrate into n-butanol by solventogenic Clostridium species is feasible and that this can be performed in a continuous system operating for longer than a month. However, our data also demonstrate that a relatively large amount of glucose is required to supply electrons and ATP for this conversion and for cell growth in a continuous culture.

Csatlakozzon
facebook oldalunkhoz

A legteljesebb gyógynövény-adatbázis, amelyet a tudomány támogat

  • Működik 55 nyelven
  • A tudomány által támogatott gyógynövényes kúrák
  • Gyógynövények felismerése kép alapján
  • Interaktív GPS térkép - jelölje meg a gyógynövényeket a helyszínen (hamarosan)
  • Olvassa el a keresésével kapcsolatos tudományos publikációkat
  • Keresse meg a gyógynövényeket hatásuk szerint
  • Szervezze meg érdeklődését, és naprakész legyen a hírkutatással, a klinikai vizsgálatokkal és a szabadalmakkal

Írjon be egy tünetet vagy betegséget, és olvassa el azokat a gyógynövényeket, amelyek segíthetnek, beírhat egy gyógynövényt, és megtekintheti azokat a betegségeket és tüneteket, amelyek ellen használják.
* Minden információ publikált tudományos kutatáson alapul

Google Play badgeApp Store badge