8 eredmények
Riboflavin is an activator of defence responses in plants that increases resistance against diseases caused by fungal, oomycete, bacterial and viral pathogens. However, the mechanisms driving defence activation by riboflavin are poorly understood. We investigated the signal transduction pathways of
Intact mitochondria isolated from Nicotiana tabacum cv. Bright Yellow 2 (TBY-2) cells can take up riboflavin via carrier-mediated systems that operate at different concentration ranges and have different uptake efficiencies. Once inside mitochondria, riboflavin is converted into catalytically active
Reactive oxygen species (ROS) are important signalling molecules in living cells. It is believed that ROS molecules are the main triggers of the hypersensitive response (HR) in plants. In the present study of the effect of riboflavin, which is excited to generate ROS in light, on the development of
Metabolomics has developed into a valuable tool for advancing our understanding of plant metabolism. Plant innate immune defenses can be activated and enhanced so that, subsequent to being pre-sensitized, plants are able to launch a stronger and faster defense response upon exposure to pathogenic
Although iron is present in large amounts in the soil, its poor solubility means that plants have to use various strategies to facilitate its uptake. In this study, we show that expression of NtPDR3/NtABCG3, a Nicotiana tabacum plasma-membrane ABC transporter in the pleiotropic drug resistance (PDR)
Nitric oxide (NO) and reactive oxygen species (ROS) play key roles in plant immunity. However, the regulatory mechanisms of the production of these radicals are not fully understood. Hypersensitive response (HR) cell death requires the simultaneous and balanced production of NO and ROS. In this
Plants use RNA silencing as a defense against viruses. In response, viruses encode various RNA silencing suppressors to counteract the antiviral silencing. Here, we identified p22 as a silencing suppressor of cucurbit chlorotic yellows crinivirus and showed that p22 interacts with CsSKP1LB1, a