Armenian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of NeuroEngineering and Rehabilitation 2016-Jan

Evaluation of a smartphone human activity recognition application with able-bodied and stroke participants.

Միայն գրանցված օգտվողները կարող են հոդվածներ թարգմանել
Մուտք / Գրանցվել
Հղումը պահվում է clipboard- ում
N A Capela
E D Lemaire
N Baddour
M Rudolf
N Goljar
H Burger

Հիմնաբառեր

Վերացական

BACKGROUND

Mobile health monitoring using wearable sensors is a growing area of interest. As the world's population ages and locomotor capabilities decrease, the ability to report on a person's mobility activities outside a hospital setting becomes a valuable tool for clinical decision-making and evaluating healthcare interventions. Smartphones are omnipresent in society and offer convenient and suitable sensors for mobility monitoring applications. To enhance our understanding of human activity recognition (HAR) system performance for able-bodied and populations with gait deviations, this research evaluated a custom smartphone-based HAR classifier on fifteen able-bodied participants and fifteen participants who suffered a stroke.

METHODS

Participants performed a consecutive series of mobility tasks and daily living activities while wearing a BlackBerry Z10 smartphone on their waist to collect accelerometer and gyroscope data. Five features were derived from the sensor data and used to classify participant activities (decision tree). Sensitivity, specificity and F-scores were calculated to evaluate HAR classifier performance.

RESULTS

The classifier performed well for both populations when differentiating mobile from immobile states (F-score > 94 %). As activity recognition complexity increased, HAR system sensitivity and specificity decreased for the stroke population, particularly when using information derived from participant posture to make classification decisions.

CONCLUSIONS

Human activity recognition using a smartphone based system can be accomplished for both able-bodied and stroke populations; however, an increase in activity classification complexity leads to a decrease in HAR performance with a stroke population. The study results can be used to guide smartphone HAR system development for populations with differing movement characteristics.

Միացեք մեր
ֆեյսբուքյան էջին

Բժշկական դեղաբույսերի ամենալավ տվյալների շտեմարանը, որին աջակցում է գիտությունը

  • Աշխատում է 55 լեզուներով
  • Բուսական բուժում, որին աջակցում է գիտությունը
  • Խոտաբույսերի ճանաչում պատկերով
  • Ինտերակտիվ GPS քարտեզ - նշեք խոտաբույսերը գտնվելու վայրի վրա (շուտով)
  • Կարդացեք ձեր որոնմանը վերաբերող գիտական հրապարակումները
  • Որոնեք բուժիչ դեղաբույսերը ՝ դրանց ազդեցությամբ
  • Կազմակերպեք ձեր հետաքրքրությունները և մշտապես տեղեկացեք նորությունների հետազոտությունների, կլինիկական փորձարկումների և արտոնագրերի մասին

Մուտքագրեք ախտանիշ կամ հիվանդություն և կարդացեք խոտաբույսերի մասին, որոնք կարող են օգնել, տպեք խոտ և տեսեք այն հիվանդություններն ու ախտանիշները, որոնց դեմ օգտագործվում են:
* Ամբողջ տեղեկատվությունը հիմնված է հրապարակված գիտական հետազոտության վրա

Google Play badgeApp Store badge