Armenian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Molecular Modeling 2015-Oct

Understanding the roles of Lys33 and Arg45 in the binding-site stability of LjLTP10, an LTP related to drought stress in Lotus japonicus.

Միայն գրանցված օգտվողները կարող են հոդվածներ թարգմանել
Մուտք / Գրանցվել
Հղումը պահվում է clipboard- ում
Felipe Valenzuela-Riffo
Gerardo Tapia
Carolina Parra-Palma
Luis Morales-Quintana

Հիմնաբառեր

Վերացական

In Lotus japonicus, as in most plants, long-chain fatty acids are important components of cuticular wax, one of the principal functions of which is to act as a barrier to water loss in response to drought stress. It is thought that lipid transfer proteins (LTPs) are involved in the process of cuticle formation. We previously described LjLTP10 as an LTP involved in cuticle formation during acclimation response to drought stress in L. japonicus. The structural model of LjLTP10 had two residues (K33 and R45) in the hydrophobic cavity, although the role of these residues was unclear. In the present work, we investigated the molecular mechanism involved in the transport of lipid precursors in L. japonicus and clarified the importance of the residues K33 and R45. First, in silico site-directed mutagenesis studies were carried out on the LjLTP10 structure. Structural analysis showed that LjLTP10 mutants possess similar structures but their hydrophobic cavities are somewhat different. Unfavorable energies for the interactions of the mutant proteins with different ligands were found by molecular docking and molecular dynamics simulations. We also examined the contributions of energetic parameters to the free energy of the protein-ligand complex using the MM-GBSA method. Results showed that the different complexes present similar, favorable van der Waals interactions, whereas electrostatic interactions were not favored in the mutant structures. Our study indicates that the residues K33 and R45 play a crucial role in maintaining the binding pocket structure required for lipid transport.

Միացեք մեր
ֆեյսբուքյան էջին

Բժշկական դեղաբույսերի ամենալավ տվյալների շտեմարանը, որին աջակցում է գիտությունը

  • Աշխատում է 55 լեզուներով
  • Բուսական բուժում, որին աջակցում է գիտությունը
  • Խոտաբույսերի ճանաչում պատկերով
  • Ինտերակտիվ GPS քարտեզ - նշեք խոտաբույսերը գտնվելու վայրի վրա (շուտով)
  • Կարդացեք ձեր որոնմանը վերաբերող գիտական հրապարակումները
  • Որոնեք բուժիչ դեղաբույսերը ՝ դրանց ազդեցությամբ
  • Կազմակերպեք ձեր հետաքրքրությունները և մշտապես տեղեկացեք նորությունների հետազոտությունների, կլինիկական փորձարկումների և արտոնագրերի մասին

Մուտքագրեք ախտանիշ կամ հիվանդություն և կարդացեք խոտաբույսերի մասին, որոնք կարող են օգնել, տպեք խոտ և տեսեք այն հիվանդություններն ու ախտանիշները, որոնց դեմ օգտագործվում են:
* Ամբողջ տեղեկատվությունը հիմնված է հրապարակված գիտական հետազոտության վրա

Google Play badgeApp Store badge