Էջ 1 սկսած 73 արդյունքներ
An easy-to-perform protocol for isolating and quantifying soluble sugars (sucrose, glucose, and fructose) and starch from maize (Zea mays) leaf tissue is described. The method has been optimized to extract non-structural carbohydrates (NSC) from frozen, finely ground tissue in a
The effect of colonization with the arbuscular mycorrhizal (AM) fungus Glomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe on the growth and physiology of NaCl-stressed maize plants ( Zea mays L. cv. Yedan 13) was examined in the greenhouse. Maize plants were grown in sand with 0 or 100 mM NaCl and
A zein-degrading protease (ZDP) from Zea mays was heterologously expressed using Pichia pastoris and its characteristics and effects on enzymatic hydrolysis of corn starch were investigated in the current study. The optimal temperature and pH for ZDP activity was 40 °C and pH 5.0, respectively. The
Under changing climate, soil salinity and sodicity is a limiting factor to crop production and are considered a threat to sustainability in agriculture. A number of attempts are being made to develop microbe-based technologies for alleviation of toxic effects of salts. However, the mechanisms of
There is great concern about the environmental impact and toxicity of palladium (Pd) because of its widespread use in automotive catalytic converters and other applications. Pd migrates and transforms in the environment and is absorbed by plant roots where it affects plant growth and eventually
BACKGROUND
Nitrate leaching and the resulting groundwater contamination from intensive cereal production has become a major concern for long-term farmland efficiency and environmental sustainability in northern China. The aim of this study was to evaluate a water-saving super-absorbent polymer (SAP)
Seed germination, as an integral stage of crop production, directly affects Zea mays (maize) yield and grain quality. However, the molecular mechanisms of seed germination remain unclear in maize. We performed comparative transcriptome analysis of two maize inbred lines, Yu82 and Yu537A, at two
Intensification of sodic soil due to increasing pH is an emerging environmental issue. The present study aimed to isolate and characterise alkaline stress-tolerant and plant growth-promoting bacterial strains from moderately alkaline soil (pH 8-9), strongly alkaline soil (pH 9-10), and very strongly
Salinity stress impairs plant growth and causes crops to yield losses worldwide. Reduction of in vivo gibberellin acid (GA) level is known to repress plant size but is beneficial to plant salt tolerance. However, the mechanisms of in vivo GA deficiency-enhanced salt tolerance in maize
Three-week-old maize (Zea mays L.) plants were submitted to light/dark cycles and to prolonged darkness to investigate the occurrence of sugar-limitation effects in different parts of the whole plant. Soluble sugars fluctuated with light/dark cycles and dropped sharply during extended darkness.
The basidiomycete Ustilago maydis causes smut disease in maize (Zea mays) by infecting all plant aerial tissues. The infection causes leaf chlorosis and stimulates the plant to produce nutrient-rich niches (i.e. tumors), where the fungus can proliferate and complete its life cycle.
Plant growth-promoting rhizobacteria (PGPR) are known for growth promotion and mitigating environmental stresses. Here, we examined the propitiousness of three indigenous salt-tolerant PGPR, i.e., Bacillus subtilis (NBRI 28B), B. subtilis (NBRI 33 N), and B. safensis (NBRI 12 M)
The importance of magnesium (Mg) for plant growth is well-documented. Silicon (Si)-mediated alleviation of mineral deficiencies has been also reported in a number of plant species; however, there is no report on the relevance of Si nutrition in plants grown in Mg-deficient condition. Therefore, in
Plant growth promoting rhizobacteria Pseudomonas aeruginosa strain MF-30 isolated from maize rhizosphere was characterized for several plant growth stimulating attributes. The strain MF-30 was also evaluated for antifungal properties against Rhizoctonia solani causing banded leaf and
Recent molecular studies show that genetic factors of salt tolerance in halophytes exist in glycophytes too, but they are not active. If these plants expose to low level salt stress these factors may become active and cause plants acclimation to higher salt stresses. So because of the importance of