Էջ 1 սկսած 149 արդյունքներ
Tamoxifen inhibits the binding of [3H]nitrobenzylthioinosine ([3H]NBMPR) to human MCF-7 breast cancer cells with an IC50 of 8 microM. Tamoxifen at 30 microM changed the apparent Kd for [3H]NBMPR binding from 0.63 +/- 0.12 to 4.75 +/- 0.58 nM, with little effect on the Bmax (311000 +/- 76000 and
BACKGROUND
Epirubicin is metabolized by uridine glucuronosyltransferase 2B7 (UGT2B7), an enzyme rich in single nucleotide polymorphisms (SNPs). We studied whether the -161 C > T germline SNP in UGT2B7 was related to epirubicin metabolism and whether differences exist in the toxicity and efficacy of
Uridine phosphorylase (UPase) is an enzyme that converts the pyrimidine nucleoside uridine into uracil. Upon availability of ribose-1-phosphate, UPase can also catalyze the formation of nucleosides from uracil as well as from 5-fluorouracil, therefore involved in fluoropyrimidine metabolism. UPase
OBJECTIVE
To correlate changes in uridine transport and colony morphology with differentiation of human breast cancer cells by tamoxifen and related agents.
METHODS
Cultures of MCF-7 human breast cancer were treated with estradiol or the antiestrogen derivatives tamoxifen, hydroxytamoxifen, and ICI
c-Yes is a member of the c-Src family of tyrosine kinases and has been implicated in intracellular signaling, cell morphology, and adhesion. Changes in its expression have also been associated with the aggressiveness of human breast and colon cancer cells. In MDA-MB-231 human breast cancer cells,
Androgens inhibit the growth of breast cancer cells, but the mechanism of androgen-induced growth inhibition has not yet been elucidated, and few androgen-responsive genes have been identified. We, therefore, used differential display PCR to identify novel androgen-responsive genes in ZR-75-1 human
OBJECTIVE
Uridine-cytidine kinase (UCK) 2 is a rate-limiting enzyme involved in the salvage pathway of pyrimidine-nucleotide biosynthesis. Recent studies have shown that UCK2 is overexpressed in many types of cancer and may play a crucial role in activating antitumor prodrugs in human cancer cells.
Uridine phosphorylase (UPase) has been shown to play an important role in the antineoplastic activity of 5-fluorouracil (5-FU) and in the anabolism of its oral prodrug, capecitabine, through the conversion of 5'-deoxy-5-fluorouridine (5'-DFUR) into 5-FU. In this study, we investigated the effect of
Uridine diphospho-glucuronosyltransferase 1A1 (UGT1A1) is involved in catalyzing estrogen, the hormone that plays a central role in the etiology of breast cancer. A common polymorphism [A(TA)6TAA (allele *1) to A(TA)7TAA change (allele *28)] in the TATA-box of the promoter region of the UGT1A1 gene
The relationship between uridine phosphorylase (UP) expression level in cancer cells and the tumour sensitivity to fluoropyrimidines is unclear. In this study, we found that UP overexpression by gene transfer, and the subsequent efficient metabolic activation of 5-fluorouracil (5-FU) by the
We examined the role of constitutional genetic variation at the UDP-glucuronosyltransferase (UGT) 1A1 locus in breast cancer susceptibility. The UGT1A1 enzyme is a major UGT involved in estradiol glucuronidation. To date, four UGT1A1 variant alleles characterized by a variation in the number of TA
Although purinergic signaling is important in regulation of immune responses, the therapeutic potential of it in the tumor microenvironment is little defined. In this study, we demonstrate that UDP/P2Y6 signaling facilitates breast cancer metastasis both in vitro and in vivo. We found that P2Y6 is
The UDP-glucuronosylatransferase 1A1 (UGT1A1) gene is involved in the metabolism of estrogen and detoxification of potential carcinogens. The number of TA repeats in the promoter region of UGT1A1 has been linked to breast cancer risk, but results varied by race. We performed a comprehensive
BACKGROUND
Epirubicin is a common adjuvant treatment for breast cancer. It is mainly eliminated after glucuronidation through uridine diphosphate-glucuronosyltransferase 2B7 (UGT2B7). The present study aimed to describe the impact of the UGT2B7(His268Tyr) polymorphism on invasive disease-free