Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cancer Research 1995-Dec

Activation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in human lung microsomes by cytochromes P450, lipoxygenase, and hydroperoxides.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
T J Smith
G D Stoner
C S Yang

Kata kunci

Abstrak

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a potent tobacco-specific carcinogen, has been demonstrated to induce lung tumors in animals and is suspected to be a human carcinogen. Cytochromes P450 are the major enzymes responsible for the activation of NNK in microsomes from the lung and liver of rat and mouse, as well as human liver. The present study investigated the enzymes responsible for the metabolic activation of NNK in human lung microsomes. In the presence of a NADPH-generating system, the formation of keto aldehyde and keto alcohol (alpha-hydroxylation products, measured together), keto acid, hydroxy acid, and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol was observed in human lung microsomes. Carbon monoxide (90%) decreased the rate of NNK oxidation by 5-49%, depending on the human lung microsomal samples analyzed. Coumarin decreased the oxidation of NNK by 9-34%, and an antibody against human P450 2A6 decreased the metabolism of NNK by 8-37%, suggesting the involvement of P450 2A6 in NNK oxidation. alpha-Napthoflavone inhibited NNK oxidation by 6-26%, possibly due to the inhibition of P450 1A1. P450 1A1-expressed microsomes catalyzed the formation of keto aldehyde and keto alcohol, exhibiting Km values of 1400 microM and 371 microM, respectively. In the absence of NADPH, NNK metabolism resulted in the formation of keto acid, keto aldehyde, and keto alcohol, and the activities in different lung samples were decreased by indomethacin (100 microM; cyclooxygenase inhibitor) or nordihydroguaiaretic acid (100 microM; lipoxygenase inhibitor) by 0-27% or 30-66%, respectively. The addition of arachidonic acid (10-100 microM) increased the rate of the formation of keto aldehyde and keto alcohol approximately 2-fold but inhibited the formation of keto acid. Soybean lipoxygenase increased the rate of formation of keto aldehyde and keto alcohol in a concentration-dependent manner. The increased rate in NNK oxidation by arachidonic acid or lipoxygenase was inhibited completely by nordihydroguaiaretic acid. Catalase, thiourea, and conjugated linoleic acid decreased the rate of NNK oxidation by 47, 20, and 45%, respectively. tert-Butyl-hydroperoxide, cumene hydroperoxide, and hydrogen peroxide increased the rate of formation of keto aldehyde and keto alcohol by 210, 40, and 50%, respectively. The results suggest that P450 enzymes are only partially responsible for the activation of NNK in human lung microsomes, and P450 2A6 or a P450 2A6-related enzyme seems to be involved in the activation. Furthermore, lipoxygenase and lipid hydroxperoxides may play important roles in the oxidation of NNK in human lung microsomes.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge