Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Critical Care Medicine 2000-Jun

Attenuation of hyperoxia-induced diaphragmatic dysfunction with lidocaine in hamsters.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
K Nishina
K Mikawa
M Shiga
S Kodama
T Kagawa
N Maekawa
H Obara

Kata kunci

Abstrak

OBJECTIVE

Toxic free radicals cause dysfunction of respiratory muscles, probably leading to respiratory distress. Exposure to high concentrations of oxygen generates plenty of free radicals. Lidocaine scavenges the reactive molecules. The purposes of the current study were first to examine whether hyperoxia impairs diaphragmatic function, and second, to assess the effects of lidocaine on hyperoxia-induced diaphragmatic dysfunction, if developed.

METHODS

Prospective, randomized animal study.

METHODS

University research laboratory.

METHODS

Forty and 48 adult male Golden-Syrian hamsters (110-150 g) in parts I and II studies, respectively.

METHODS

In the part I study, hyperoxia for 5 and 6 days reduced diaphragmatic contractility and enhanced fatigue. In the part II study, hamsters were randomly allocated to one of six groups (n = 8 each): exposure to air for 6 days with saline (group A-S) or lidocaine infusion (group A-L), exposure to 100% oxygen for 5 days with saline (group 05-S) or lidocaine (group 05-L), and exposure to 100% oxygen for 6 days with saline (group 06-S) or lidocaine (group 06-L). Saline or lidocaine (2 mg/kg/hr) was subcutaneously given immediately before exposure to air or oxygen. Diaphragmatic contractility and fatigability were assessed in vitro using muscle strips excised from the costal diaphragms. Diaphragmatic levels of malondialdehyde (MDA), an index of free radical-mediated lipid peroxidation, were measured. These variables were compared between groups.

RESULTS

Twitch and tetanic tensions in groups 05-S and 06-S were reduced compared with group A-S. Tensions generated during fatigue trials were also decreased in groups 05-S and 06-S. MDA levels were elevated in diaphragms from these groups. In groups 05-L and 06-L, contractile dysfunction, deterioration of fatigability, and MDA formation in the diaphragm were attenuated.

CONCLUSIONS

Lidocaine attenuated hyperoxia-induced diaphragmatic dysfunction assessed by contractile profiles and fatigability in hamsters. This beneficial effect may be attributable, in part, to inhibition of lipid peroxidation.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge