Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Current Neurovascular Research 2004-Oct

Axonal ionic pathophysiology in human peripheral neuropathy and motor neuron disease.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
Satoshi Kuwabara
Sonoko Misawa

Kata kunci

Abstrak

Testing the excitability of axons can provide insights into the ionic mechanisms underlying the pathophysiology of axonal dysfunction in human neuropathies and motor neuron diseases. Threshold tracking, which was developed in the 1990's, non-invasively measures a number of axonal excitability indices, which depend on membrane potential and on the Na+ and K+ conductances. This paper reviews recent advances in ionic-pathophysiological studies in human subjects in vivo. Membrane potential of human axons can be estimated, because most of the ion channels expressed on the axolemma are voltage-dependent, and patterns of changes in multiple excitability indices can suggest whether axons are depolarized or hyperpolarized. This has been clearly demonstrated in a single patient with acute hypokalemia (hyperpolarization) and patients with chronic renal failure (depolarization due to hyperkalemia). Muscle cramps/fasciculations arise from hyperexcitability of the motor axons. The enhanced excitability can result from altered ion channel function; an increase in persistent Na+ conductance, a decrease in accommodative K+ conductance, and focal membrane depolarization, all of which increase excitability, have been demonstrated in amyotrophic lateral sclerosis or other disorders affecting lower motor neurons. Patients with demyelinating neuropathy often complain of muscle fatigue. During voluntary contraction, the activation of the electrogenic Na+-K+ pump and resulting membrane hyperpolarization can cause activity-dependent conduction block when the safety factor for impulse transmission is critically reduced. Studies of ion-channel pathophysiology in human subjects have recently begun. Investigating ionic mechanisms is of clinical relevance, because once a specific ionic conductance is identified, blocking or activating it may provide a new therapeutic option for a variety of neuromuscular diseases.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge