Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Science and Pollution Research 2019-Oct

Biosynthesized Fe- and Ag-doped ZnO nanoparticles using aqueous extract of Clitoria ternatea Linn for enhancement of sonocatalytic degradation of Congo red.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
Yin Chan
Yean Pang
Steven Lim
Chin Lai
Ahmad Abdullah
Woon Chong

Kata kunci

Abstrak

Nowadays, the current synthesis techniques used in industrial production of nanoparticles have been generally regarded as nonenvironmentally friendly. Consequently, the biosynthesis approach has been proposed as an alternative to reduce the usage of hazardous chemical compounds and harsh reaction conditions in the production of nanoparticles. In this work, pure, iron (Fe)-doped and silver (Ag)-doped zinc oxide (ZnO) nanoparticles were successfully synthesized through the green route using Clitoria ternatea Linn. The optical, chemical, and physical properties of the biosynthesized ZnO nanoparticles were then analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), UV-Vis diffuse reflectance spectroscopy (DRS), zeta potential measurement, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and surface analysis. The biosynthesized ZnO nanoparticles were crystallized with a hexagonal wurtzite structure and possessed smaller particle sizes than those of commercially or chemically produced samples. The existence of biomolecules to act as reducing and stabilizing agents from C. ternatea Linn aqueous extract was confirmed using FTIR analysis. The biosynthesized ZnO nanoparticles mainly comprised of negatively charged groups and responsible for moderately stable dispersion of the nanoparticles. All these properties were favorable for the sonocatalytic degradation of Congo red. Sonocatalytic activity of ZnO nanoparticles was studied through the degradation of 10 mg/L Congo red using ultrasonic irradiation at 45 kHz and 80 W. The results showed that the sonocatalytic degradation efficiency of Congo red in the presence of biosynthesized ZnO nanoparticles prepared at 50 °C for 1 h could achieve 88.76% after 1 h. The sonocatalytic degradation efficiency of Congo red in the presence of Ag-doped ZnO was accelerated to 94.42% after 10 min which might be related to the smallest band gap energy (3.02 eV) and the highest specific surface area (10.31 m2/g) as well as pore volume (0.0781 cm3/g). Lastly, the biosynthesized ZnO nanoparticles especially Ag-doped ZnO offered significant antibacterial potential against Escherichia coli which indicated its ability to inhibit the normal growth and replication of bacterial cells. These results affirmed that the biosynthesized ZnO nanoparticles could be used as an alternative to the current chemical compounds and showed a superior sonocatalytic activity toward degradation of Congo red.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge