Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BMC Plant Biology 2012-Jan

Characterization of resistance to pine wood nematode infection in Pinus thunbergii using suppression subtractive hybridization.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
Tomonori Hirao
Eitaro Fukatsu
Atsushi Watanabe

Kata kunci

Abstrak

BACKGROUND

Pine wilt disease is caused by the pine wood nematode, Bursaphelenchus xylophilus, which threatens pine forests and forest ecosystems worldwide and causes serious economic losses. In the 40 years since the pathogen was identified, the physiological changes occurring as the disease progresses have been characterized using anatomical and biochemical methods, and resistant trees have been selected via breeding programs. However, no studies have assessed the molecular genetics, e.g. transcriptional changes, associated with infection-induced physiological changes in resistant or susceptible trees.

RESULTS

We constructed seven subtractive suppression hybridization (SSH) cDNA libraries using time-course sampling of trees inoculated with pine wood nematode at 1, 3, or 7 days post-inoculation (dpi) in susceptible trees and at 1, 3, 7, or 14 dpi in resistant trees. A total of 3,299 sequences was obtained from these cDNA libraries, including from 138 to 315 non-redundant sequences in susceptible SSH libraries and from 351 to 435 in resistant SSH libraries. Using Gene Ontology hierarchy, those non-redundant sequences were classified into 15 subcategories of the biological process Gene Ontology category and 17 subcategories of the molecular function category. The transcriptional components revealed by the Gene Ontology classification clearly differed between resistant and susceptible libraries. Some transcripts were discriminative: expression of antimicrobial peptide and putative pathogenesis-related genes (e.g., PR-1b, 2, 3, 4, 5, 6) was much higher in susceptible trees than in resistant trees at every time point, whereas expression of PR-9, PR-10, and cell wall-related genes (e.g., for hydroxyproline-rich glycoprotein precursor and extensin) was higher in resistant trees than in susceptible trees at 7 and 14 dpi.

CONCLUSIONS

Following inoculation with pine wood nematode, there were marked differences between resistant and susceptible trees in transcript diversity and the timing and level of transcripts expressed in common; in particular, expression of stress response and defense genes differed. This study provided new insight into the differences in the physiological changes between resistant and susceptible trees that have been observed in anatomical and biochemical studies.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge