Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochimica et Biophysica Acta - General Subjects 1996-Jan

Comparison of the inhibitory action of synthetic capsaicin analogues with various NADH-ubiquinone oxidoreductases.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
T Satoh
H Miyoshi
K Sakamoto
H Iwamura

Kata kunci

Abstrak

Capsaicin is a new naturally occurring inhibitor of proton-pumping NADH-ubiquinone oxidoreductase (NDH-1), that competitively acts against ubiquinone. A series of capsaicin analogues was synthesized to examine the structural factors required for the inhibitory action and to probe the structural property of the ubiquinone catalytic site of various NADH-ubiquinone reductases, including non-proton-pumping enzyme (NDH-2), from bovine heart mitochondria, potato tuber (Solanum tuberosum, L) mitochondria and Escherichia coli (GR 19N) plasma membranes. Some synthetic capsaicins were fairly potent inhibitors of each of the three NDH-1 compared with the potent rotenone and piericidin A. Synthetic capsaicin analogues inhibited all three NDH-1 activities in a competitive manner against an exogenous quinone. The modification both of the substitution pattern and of the number of methoxy groups on the benzene ring, which may be superimposable on the quinone ring of ubiquinone, did not drastically affect the inhibitory potency. In addition, alteration of the position of dipolar amide bond unit in the molecule and chemical modifications of this unit did not change the inhibitory potency, particularly with bovine heart and potato tuber NDH-1. These results might be explained assuming that the ubiquinone catalytic site of NDH-1 is spacious enough to accommodate a variety of structurally different capsaicin analogues in a dissimilar manner. Regarding the moiety corresponding to the alkyl side chain, a rigid diphenyl ether structure was more inhibitory than a flexible alkyl chain. Structure-activity studies and molecular orbital calculations suggested that a bent form is the active conformation of capsaicin analogues. On the other hand, poor correlations between the inhibitory potencies determined with the three NDH-1 suggested that the structural similarity of the ubiquinone catalytic sites of these enzymes is rather poor. The sensitivity to the inhibition by synthetic capsaicins remarkably differed between NDH-1 and NDH-2, supporting the notion that the sensitivity against capsaicin inhibition correlates well with the presence of an energy coupling site in the enzyme (Yagi, T. (1990) Arch. Biochem. Biophys. 281, 305-311). It is noteworthy that several synthetic capsaicins discriminated between NDH-1 and NDH-2 much better than natural capsaicin.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge