Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chemical Research in Toxicology 2004-Mar

Detection of nitrated benzene metabolites in bone marrow of B6C3F1 mice treated with benzene.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
K-M Chen
K El-Bayoumy
J Cunningham
C Aliaga
H Li
A A Melikian

Kata kunci

Abstrak

Benzene, a constituent of cigarette smoke, is a human leukemogen and induces bone marrow toxicity. The mechanism of benzene-induced toxicity is not well-established. We hypothesized that relatively high levels of nitric oxide formed in bone marrow can react with oxygen and/or superoxide anion that is generated during redox cycling of ring-hydroxylated benzene metabolites to yield peroxynitrite as well as other NO-derived intermediates. Peroxynitrite can either directly damage cellular macromolecules or form nitrated toxic metabolites. Toward this end, we investigated whether nitro derivatives of benzene are formed in bone marrow of mice treated with benzene. First, we have characterized products formed during activation of benzene in Fenton's system in the absence or presence of NO-releasing compound in vitro by GC/MS. The result of above experiment prompted us to determine whether similar products can be formed in vivo. Groups of B6C3F1 male mice, eight weeks of age, were given a single intraperitoneal dose of [14C]benzene (400 mg/kg body wt, 9.7 mCi/mmol) or an equal dose of unlabeled benzene in corn oil, and the mice were killed 0.5 or 1 h posttreatment. The control group received only vehicle injections. Organic solvent extractable metabolites from bone marrow, liver, lungs, and blood of mice treated with [14C]benzene were identified by comparison of their respective retention times under two different HPLC conditions with authentic standard samples. These metabolites were further characterized by comparison of their GC/MS properties to those of reference standards. Nitro metabolites, namely, nitrobenzene, nitrobiphenyl, and nitrophenol isomers, were detected in the bone marrow of the mice 1 h after benzene treatment. Formation of nitro derivatives in other tissues was either not observed or was significantly less than that formed in bone marrow. This study clearly demonstrates that nitric oxide is a contributor to benzene metabolism and can form nitrated derivatives that may, in part, account for bone marrow toxicity.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge