Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chemosphere 2002-Jan

Effects of atmospheric exposure to naphthalene on xenobiotic-metabolising enzymes in the snail Helix aspersa.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
M Ismert
T Oster
D Bagrel

Kata kunci

Abstrak

Polycyclic aromatic hydrocarbons are xenobiotics whose elevated toxicity for living organisms requires to efficiently monitor air pollution, either by evaluating their levels in the environment, or by assessing their biological impacts on sentinel organisms. We investigated the effects of naphthalene exposure on some xenobiotic-metabolising enzyme activities in three organs of Helix aspersa. Particular activities depending on cytochrome P450 (ethoxyresorufin O-deethylase, EROD; ethoxycoumarin O-deethylase, ECOD; pentoxyresorufin O-dealkylase, PROD) and associated with glutathione (glutathione S-transferase, GST; glutathione peroxidase, GPX; glutathione reductase, GR) were assessed. In control animals, the P450-dependent specific activities were distributed according to the range kidney > digestive gland > mantle cavity forming tissues (MCFT). Neither ECOD nor PROD activities could be detected in MCFT. In the two other organs, the major phase I activities were due to ECOD, the level of PROD being very low or null. The glutathione-associated activities showed comparable levels in the three organs, except GPX activity that was higher in the digestive gland. Naphthalene (NAP) exposure did not affect any activity in MCFT, but it significantly decreased EROD and ECOD activities in the kidney as opposed to their increase in the digestive gland, whereas PROD activities were not influenced by the treatment. Glutathione-dependent activities were not significantly affected by NAP exposure, except for GPX which activity diminished in the digestive gland. This study demonstrates that complex detoxification pathways should exist in Helix aspersa as in mammals and that they could be used as potential biomarkers of NAP exposure.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge