Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemical Pharmacology 1998-Nov

Effects of cannabinoids on prolactin and gonadotrophin secretion: involvement of changes in hypothalamic gamma-aminobutyric acid (GABA) inputs.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
R de Miguel
J Romero
R M Muñoz
L García-Gil
S González
M A Villanua
A Makriyannis
J A Ramos
J J Fernández-Ruiz

Kata kunci

Abstrak

CB1 cannabinoid receptors are located in hypothalamic nuclei and their activation alters several hypothalamic neurotransmitters resulting in, among other things, decreased prolactin (PRL) and luteinizing hormone (LH) secretion from the anterior pituitary gland. In the present study, we addressed two related objectives to further explore this complex regulation. First, we examined whether changes in gamma-aminobutyric acid (GABA) and/or dopamine (DA) inputs in the medial basal hypothalamus might occur in parallel to the effects resulting from the activation of CB1 receptors on PRL and gonadotrophin secretion in male rats. Thus, the acute administration of (-)-delta9-tetrahydrocannnabinol (delta9-THC) produced, as expected, a marked decrease in plasma PRL and LH levels, with no changes in follicle-stimulating hormone (FSH) levels. This was paralleled by an increase in the contents of GABA, but not of DA, in the medial basal hypothalamus and, to a lesser extent, in the anterior pituitary gland. The co-administration of delta9-THC and SR141716, a specific antagonist for CB1 receptors, attenuated both PRL and LH decrease and GABA increase, thus asserting the involvement of the activation of CB1 receptors in these effects. As a second objective, we tested whether the prolonged activation of these receptors might induce tolerance with regard to the decrease in PRL and LH release, and whether this potential tolerance might be related to changes in CB1-receptor binding and/or mRNA expression. The chronic administration of R-methanandamide (AM356), a more stable analog of anandamide, the putative endogenous cannabinoid ligand, produced a marked decrease in plasma PRL and LH levels, with no changes in FSH. The decreases were of similar magnitude to those caused by a single injection of this cannabimimetic ligand, thus suggesting the absence of tolerance. In parallel, the analysis of CB1-receptor binding and mRNA expression in several hypothalamic structures proved that the acute or chronic administration of AM356 did not affect either the binding or the synthesis of these receptors. In summary, the activation of CB1 receptors in hypothalamic nuclei produced the expected decrease in PRL and LH secretion, an effect which might be related to an increase in GABAergic activity in the hypothalamus-anterior pituitary axis. The prolonged activation of these receptors for five days did not elicit tolerance in terms of an attenuation in the magnitude of the decrease in PRL and LH, and, accordingly, did not alter CB1-receptor binding and mRNA levels in the hypothalamic nuclei examined.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge