Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Tree Physiology 1988-Jun

Effects of hypoxia and elevated carbon dioxide concentration on water flux through Populus roots.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
B Smit
M Stachowiak

Kata kunci

Abstrak

Restricted gas exchange between the rhizosphere and aerial environment reduces the concentration of oxygen (O(2)) and elevates the concentration of carbon dioxide (CO(2)) in the root zone, thereby leading to increased resistance to root water uptake. In this study, the effects of hypoxia and 20% CO(2) on water flux (J(v)) through roots of hybrid poplar (Populus trichocarpa Torr. & A. Gray x P. deltoides Bartr. ex Marsh) were measured in detached root systems under pressure in solution culture. Because stomata closed and there was no change in foliar water potential in hypoxic plants, root resistance was measured in detached systems as opposed to using whole plant measurements. However, under aerated conditions root resistance values were similar in intact plants and excised roots. Water fluxes through pressurized root systems treated with nitrogen and low oxygen (< 2% O(2)), elevated CO(2) (20% CO(2)), and low O(2) with elevated CO(2) concentrations were reduced to 40, 51 and 58%, respectively, of J(v) of plants aerated with ambient air. Reductions in J(v) occurred more rapidly in response to elevated CO(2) than to low O(2) concentrations. The effects of low O(2) and elevated CO(2) were not additive. Changes in pH that resulted from elevated CO(2) concentrations did not account for the reduction in J(v). When root systems of intact plants were pretreated for 24 or 48 h with low O(2) concentration, J(v) measured on pressurization was reduced by 33 and 48%, respectively, compared to aerated roots. Stomatal conductance was also reduced, however, so leaf water potential of plants with hypoxic roots were similar to those of aerated controls.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge