Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Fundamental and applied toxicology : official journal of the Society of Toxicology 1984-Feb

Frog palate mucociliary apparatus: structure, function, and response to formaldehyde gas.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
K T Morgan
D L Patterson
E A Gross

Kata kunci

Abstrak

The upper respiratory tract mucociliary apparatus represents one of the first defenses against inhaled noxious materials. The frog palate has been widely used as a model to investigate the mode of action of this apparatus and to study its response to irritant gases. Video analysis was used here for the determination of mucus flow rate and flow patterns, ciliary beat frequency, and the nature of ciliary activity in the in vitro frog palate preparation. The results of studies of time-lapse video recordings were used in conjunction with light microscopic and ultrastructural morphologic investigations to determine functional interactions between cilia, the epiphase, and the periciliary fluid. It was concluded that the cilia enter the epiphase during the effector stroke, that waves may be produced on the under surface of this layer, and that the periciliary fluid is less viscous than, and moves in the same direction as, the epiphase. The response of the frog palate mucociliary apparatus to formaldehyde gas was also studied using an in vitro exposure system. There were distinct concentration-related responses to formaldehyde with initial stimulation, and at higher concentrations, subsequent inhibition of mucociliary function. Stimulation of mucus flow rate was due to increased ciliary activity, while inhibition of flow, which preceded ciliastasis, was attributed to direct effect of formaldehyde on the superficial mucus layer. Ciliastasis on the other hand was considered to provide evidence that the formaldehyde had penetrated the mucus layer and induced direct toxic effects on the underlying epithelial cells.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge