Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Clinical Nuclear Medicine 2016-May

Glioma Recurrence Versus Radiation Necrosis: Single-Session Multiparametric Approach Using Simultaneous O-(2-18F-Fluoroethyl)-L-Tyrosine PET/MRI.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
Amarnath Jena
Sangeeta Taneja
Aashish Gambhir
Anil Kumar Mishra
Maria Mathew Dʼsouza
Sapna Manocha Verma
Puja Panwar Hazari
Pradeep Negi
Ganesh Krishna Rao Jhadav
Shanti Kumar Sogani

Kata kunci

Abstrak

OBJECTIVE

This study aimed to investigate the potential of hybrid gadolinium (Gd)-enhanced F-fluoroethyl-L-tyrosine (F-FET) PET/MRI in distinguishing recurrence from radiation necrosis using simultaneously acquired multiple structural and functional parameters.

METHODS

Twenty-six patients (5 female and 21 male patients; mean ± SD age, 51.58 ± 15.97 years) with single or multiple contrast-enhancing brain lesions (n = 32) on MRI after surgery and radiation therapy were evaluated with simultaneously acquired Gd-enhanced F-FET PET/MRI. They were then followed up with resurgery and histopathological diagnosis (n = 9) and/or clinical/MRI- or PET/MRI-based imaging follow-up (n = 17). PET/MR images were analyzed using manually drawn regions of interest over areas of maximal contrast enhancement and/or FET uptake. Maximum target-to-background ratio (TBRmax), mean target-to-background ratio (TBRmean), and choline-to-creatine (Cho/Cr) ratios as well as normalized mean relative cerebral blood volume (rCBVmean) and mean apparent diffusion coefficient (ADCmean) were determined. The accuracy of each parameter individually and in various possible combinations for differentiating recurrence versus radiation necrosis was evaluated using 2-tailed independent samples Student t test, multivariate analysis of variance, and multivariate receiver operating characteristic analysis. Positive histopathological finding and long-term imaging/clinical follow-up suggestive of disease progression served as criterion standard.

RESULTS

Of 26 patients, 19 were classified as recurrence, with 7 patients showing radiation necrosis. Individually, TBRmax, TBRmean, ADCmean, and Cho/Cr ratios as well as normalized rCBVmean was significant in differentiating recurrence from radiation necrosis, with an accuracy of 93.8% for TBRmax, 87.5% for TBRmean, 81.3% for ADCmean, 96.9% for Cho/Cr ratio, and 90.6% for normalized rCBVmean. The accuracy of both normalized rCBVmean and ADCmean was improved in combination with TBRmax or Cho/Cr ratio. However, TBRmax (or TBRmean) with Cho/Cr ratio yielded the highest accuracy, approaching up to 97%. Furthermore, maximum area under the curve is achieved with the combination of TBRmean, CBV, and Cho/Cr values.

CONCLUSIONS

Our findings suggest that FET uptake with Cho/Cr ratio and normalized rCBVmean could be most useful to distinguish primary glioma recurrence from radiation necrosis. Hybrid simultaneous multiparametric F-FET PET/MRI might play a significant role in the evaluation of patients with suspected glioma recurrence.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge