Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Planta 2004-May

Glutamate activates cation currents in the plasma membrane of Arabidopsis root cells.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
Vadim Demidchik
Pauline Adobea Essah
Mark Tester

Kata kunci

Abstrak

The effect of glutamate on plant plasma membrane cation transport was studied in roots of Arabidopsis thaliana (L.) Heynh. Patch-clamp experiments using root protoplasts, (22)Na(+) unidirectional fluxes into intact roots and measurements of cytosolic Ca(2+) activity using plants expressing cytosolically-targeted aequorin in specific cell types were carried out. It was demonstrated that low-millimolar concentrations of glutamate activate within seconds both Na(+) and Ca(2+) currents in patch-clamped protoplasts derived from roots. The probability of observing glutamate-activated currents increased with increasing glutamate concentration (up to 29% at 3 mM); half-maximal activation was seen at 0.2-0.5 mM glutamate. Glutamate-activated currents were voltage-insensitive, 'instantaneous' (completely activated within 2-3 ms of a change in voltage) and non-selective for monovalent cations (Na(+), Cs(+) and K(+)). They also allowed the permeation of Ca(2+). Half-maximal Na(+) currents occurred at 20-30 mM Na(+). Glutamate-activated currents were sensitive to non-specific blockers of cation channels (quinine, La(3+), Gd(3+)). Although low-millimolar concentrations of glutamate did not usually stimulate unidirectional influx of (22)Na(+) into intact roots, they reliably caused an increase in cytosolic Ca(2+) activity in protoplasts isolated from the roots of aequorin-transformed Arabidopsis plants. The response of cytosolic Ca(2+) activity revealed a two-phase development, with a rapid large transient increase (lasting minutes) and a prolonged subsequent stage (lasting hours). Use of plants expressing aequorin in specific cell types within the root suggested that the cell types most sensitive to glutamate were in the mature epidermis and cortex. The functional significance of these glutamate-activated currents for both cation uptake into plants and cell signaling remains the subject of speculation, requiring more knowledge about the dynamics of apoplastic glutamate in plants.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge