Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
PLoS ONE 2018

Glycerol-3-phosphate dehydrogenase (GPDH) gene family in Zea mays L.: Identification, subcellular localization, and transcriptional responses to abiotic stresses.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
Ying Zhao
Xin Li
Feng Wang
Xunchao Zhao
Yuqiao Gao
Changjiang Zhao
Lin He
Zuotong Li
Jingyu Xu

Kata kunci

Abstrak

Glycerol-3-phosphate dehydrogenase (GPDH) catalyzes the formation of glycerol-3-phosphate, and plays an essential role in glycerolipid metabolism and in response to various stresses in different species. In this study, six ZmGPDH genes were obtained by a thorough search against maize genome, and designated as ZmGPDH1-6, respectively. The structural and evolutionary analyses showed that the ZmGPDHs family had typical conserved domains and similar protein structures as the known GPDHs from other plant species. ZmGPDHs were divided into NAD+-dependent type A form (ZmGPDH1-5) and FAD-dependent type B form (ZmGPDH6) based on their N-terminal sequences. Four full length ZmGPDHs were fused with GFP fusion proteins, and their subcellular localization was determined. ZmGPDH1 and ZmGPDH3 were located to the cytosol and mainly recruited to the surface of endoplasmic reticulum (ER), whereas ZmGPDH4 and ZmGPDH5 were located in the chloroplast. The transcriptional analysis of the ZmGPDHs in different maize tissues revealed relatively high level of transcripts accumulation of ZmGPDHs in roots and early stage developing seeds. Furthermore, we examined the transcriptional responses of the six GPDH genes in maize under various abiotic stresses, including salt, drought, alkali and cold, and significant induction of ZmGPDHs under osmotic stresses was observed. Together, this work will provide useful information for deciphering the roles of GPDHs in plant development and abiotic stress responses.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge