Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Nanobiotechnology 2014-Oct

Green silver nanoparticles of Phyllanthus amarus: as an antibacterial agent against multi drug resistant clinical isolates of Pseudomonas aeruginosa.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
Khushboo Singh
Manju Panghal
Sangeeta Kadyan
Uma Chaudhary
Jaya Parkash Yadav

Kata kunci

Abstrak

BACKGROUND

Pseudomonas aeruginosa infection is a leading cause of morbidity and mortality in burn and immune-compromised patients. In recent studies, researchers have drawn their attention towards ecofriendly synthesis of nanoparticles and their activity against multidrug resistant microbes. In this study, silver nanoparticles were synthesized from aqueous extract of Phyllanthus amarus. The synthesized nanoparticles were explored as a potent source of nanomedicine against MDR burn isolates of P. aeruginosa.

RESULTS

Silver nanoparticles were successfully synthesized using P. amarus extract and the nature of synthesized nanoparticles was analyzed by UV-Vis spectroscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, dynamic light scattering, zeta potential, X- ray diffraction and fourier transform infra-red spectroscopy. The average size of synthesized nanoparticles was 15.7, 24 ± 8 and 29.78 nm by XRD, TEM and DLS respectively. The antibacterial activity of AgNPs was investigated against fifteen MDR strains of P. aeruginosa tested at different concentration. The zone of inhibition was measured in the range of 10 ± 0.53 to 21 ± 0.11mm with silver nanoparticles concentration of 12.5 to 100 μg/ml. The zone of inhibition increased with increase in the concentration of silver nanoparticles. The MIC values of synthesized silver nanoparticles were found in the range of 6.25 to12.5 μg/ml. The MIC values are comparable to the standard antibiotics.

CONCLUSIONS

The present study suggests that silver nanoparticles from P. amarus extract exhibited excellent antibacterial potential against multidrug resistant strains of P. aeruginosa from burn patients and gives insight of their potential applicability as an alternative antibacterial in the health care system to reduce the burden of multidrug resistance.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge