Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Acta Biomaterialia 2019-Aug

High-resolution bimodal imaging and potent antibiotic/photodynamic synergistic therapy for osteomyelitis with a bacterial inflammation-specific versatile agent.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
Xiaolin Lu
Ronghe Chen
Jing Lv
Weicai Xu
Hongjiang Chen
Zebin
Shanshan Huang
Shi Li
Heng Liu
Jun Hu

Kata kunci

Abstrak

Unsatisfactory diagnosis and therapy of osteomyelitis are still common but challenging issues for clinicians. To overcome these problems, a bacterial inflammation-specific multifunctional agent, denoted bovine serum albumin-manganese dioxide-ubiquicidin29-41-indocyanine green (ICG) -gentamicin (BMUIG), was synthesized for combined high-resolution bimodal imaging and antibiotic/photodynamic therapy for osteomyelitis. BMUIG binding affinity and antibacterial ability were assessed by using Staphylococcus aureus (S. aureus). Photoacoustic/magnetic resonance imaging was performed on a mouse model of acute osteomyelitis after intravenous injection of BMUIG. Then, myelitis-bearing mice were treated with antibiotic/photodynamic combination therapy. BMUIG specifically targeted S. aureus in comparison with non-targeted agents. In the osteomyelitis model, the infection area was identified accurately and quickly through ICG-based photoacoustic imaging and Mn2+-based T1 magnetic resonance imaging after injection of BMUIG. Furthermore, the manganese dioxide in BMUIG reacted with the locally produced hydrogen peroxide under acidic inflammatory conditions, continuously generating oxygen for enhanced photodynamic therapy. In combination with low-dose gentamicin, a synergistic antibacterial effect was observed and bone infection was resolved. In summary, a non-invasive accurate diagnosis and effective synergistic therapy for osteomyelitis was successfully developed using a bacterial inflammation-specific versatile agent, which would provide a sound theranostic strategy for common infectious diseases. STATEMENT OF SIGNIFICANCE: Osteomyelitis is one of the most serious consequences in orthopedics. However, its inaccurate diagnosis and low-effective antibiotic treatment are still common but challenging issues for clinicians. To overcome these problems, we uniquely designed a bacterial inflammation-specific multifunctional nanoagent, bovine serum albumin-manganese dioxide-ubiquicidin29-41-indocyanine green-gentamicin (BMUIG), for high-resolution bimodal imaging and antibiotic/photodynamic combined therapy of osteomyelitis. Herein, high-resolution imaging technologies refer to classic magnetic resonance imaging and emerging photoacoustic imaging. Photodynamic therapy is subtly introduced because of its safe and effective killing mechanism, which can synergize the bactericidal effect of antibiotics. As a result, we successfully realize non-invasive accurate diagnosis and effective synergistic therapy for osteomyelitis by virtue of the bacterial inflammation-specific versatile agent, which will serve as a promising candidate for sound theranostics in common infectious diseases.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge