Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Drug Metabolism and Disposition 1995-Oct

Human breast adenocarcinoma MCF-7/0 cells electroporated with cytosolic class 3 aldehyde dehydrogenases obtained from tumor cells and a normal tissue exhibit differential sensitivity to mafosfamide.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
L Sreerama
N E Sladek

Kata kunci

Abstrak

The cytosolic class aldehyde dehydrogenase (ALDH-3) present in human normal tissues/secretions is apparently much less able to catalyze the oxidation aldophosphamide to carboxyphosphamide than is the ALDH-3 present in human tumor cells/tissues, suggesting that the former may be less able to protect cells from the cytotoxic action of cyclophosphamide, mafosfamide, and other oxazaphosphorines. To test this notion, relatively large and approximately equal amounts of human normal stomach mucosa ALDH-3 and catechol-induced human breast adenocarcinoma MCF-7/0 ALDH-3 were first electroporated into cells (MCF-7/0) that constitutively express only very small amounts of the enzyme. The resultant preparations were then tested for sensitivity to mafosfamide. ALDH-3 activities (NADP-dependent catalysis of benzaldehyde oxidation) were 1.7, 212, and 183 mlU/10(7) cells in sham-electroporated MCF-7/0 cells, and MCF-7/0 cells electroporated with stomach mucosa ALDH-3 and catechol-induced MCF-7/0 ALDH-3, respectively. LC90 values (concentrations of mafosfamide required to effect a 90% cell kill) were 62, 417, and >1,000 microM, respectively. The three preparations were equisensitive to phosphoramide mustard (LC90 = approximately 850 microM). Inclusion of benzaldehyde in the drug exposure medium fully restored the sensitivity of MCF-7/0 cells electroporated with either enzyme to mafosfamide. These observations support the notions that 1) cellular sensitivity to the oxazaphosphorines decreases as the cellular content of ALDH-3 increases, 2) the foregoing is the consequence of ALDH-3-catalyzed oxidation (thus detoxification) of aldophosphamide, and 3) the ALDH-3 present in at least some tumor cells/tissues is a slight variant of the ALDH-3 present in normal tissues/secretions. Furthermore, they illustrate the utility of electroporation used as a tool to determine whether a given enzyme, or even more generally, protein or other macromolecule, is a determinant of cellular sensitivity to a given cytotoxic agent.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge