Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Neuroscience 2006-Sep

Hypoxia-induced Bax and Bcl-2 protein expression, caspase-9 activation, DNA fragmentation, and lipid peroxidation in mitochondria of the cerebral cortex of newborn piglets: the role of nitric oxide.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
O P Mishra
T Randis
Q M Ashraf
M Delivoria-Papadopoulos

Kata kunci

Abstrak

The present study tests the hypothesis that cerebral hypoxia results in increased ratio of Bax/Bcl-2, activation of caspase-9, lipid peroxidation, and DNA fragmentation in mitochondria of the cerebral cortex of newborn piglets and that the inhibition of nitric oxide synthase by N-nitro-L-arginine during hypoxia will prevent the events leading to mitochondrial DNA fragmentation. To test this hypothesis, six piglets, 3-5 days old, were divided into three groups: normoxic (n=5), hypoxic (n=5), and hypoxic-nitric oxide synthase (n=4). Hypoxic animals were exposed to a FiO2 of 0.6 for 60 min. Nitric oxide synthase (40 mg/kg) was infused over 60 min prior to hypoxia. Tissue hypoxia was confirmed by measuring levels of ATP and phosphocreatine. Cerebral cortical tissue mitochondria were isolated and purified using a discontinuous ficoll gradient. Mitochondrial Bax and Bcl-2 proteins were determined by Western blot. Caspase-9 activity in mitochondria was determined spectro-fluorometrically using fluorogenic substrate for caspase-9. Fluorescent compounds, an index of mitochondrial membrane lipid peroxidation, were determined spectrofluorometrically. Mitochondrial DNA was isolated and separated by electrophoresis on 1% agarose gel and stained with ethidium bromide. ATP levels (micromol/g brain) were 4.52+/-0.34 in normoxic, 1.18+/-0.29 in hypoxic (P<0.05) and 1.00+/-0.26 in hypoxic-nitric oxide synthase animals (P<0.05 vs. normoxic). Phosphocreatine levels (micromol/g brain) were 3.61+/-0.33 in normoxic, 0.70+/-0.20 in hypoxic (P<0.05 vs. normoxic) and 0.57+/-0.14 in hypoxic-nitric oxide synthase animals (P<0.05 vs. normoxic, P=NS vs. hypoxic). Bax density in mitochondrial membranes was 160+/-28 in normoxic and 324+/-65 in hypoxic (P<0.001 vs. normoxic). Bcl-2 density mitochondria was 96+/-18 in normoxic and 98+/-20 in hypoxic (P=NS vs. normoxic). Mitochondrial caspase-9 activity (nmol/mg protein/h) was 1.32+/-0.23 in normoxic and 2.25+/-0.24 in hypoxic (P<0.01 vs. normoxic). Levels of fluorescent compounds (microg of quinine sulfate/g protein) were 12.48+/-4.13 in normoxic and 37.92+/-7.62 in hypoxic (P=0.003 vs. normoxic). Densities (ODxmm2) of low molecular weight DNA fragments were 143+/-38 in normoxic, 365+/-152 in hypoxic, (P<0.05 vs. normoxic) and 163+/-25 in hypoxic-nitric oxide synthase animals (P<0.05 vs. hypoxic, P=NS vs. normoxic). The data demonstrate that hypoxia results in increased mitochondrial proapoptotic protein Bax, increased mitochondrial caspase-9 activity, increased mitochondrial lipid peroxidation, and increased fragmentation of DNA in mitochondria of the cerebral cortex of newborn piglets. The administration of a nitric oxide synthase inhibitor, nitric oxide synthase, prior to hypoxia prevented fragmentation of mitochondrial DNA, indicating that the hypoxia-induced mitochondrial DNA fragmentation is NO-mediated. We propose that NO free radicals generated during hypoxia lead to NO-mediated altered expression of Bax leading to increased ratio of pro-apoptotic/anti-apoptotic protein resulting in modification of mitochondrial membrane, and subsequently Ca2+-influx and fragmentation of mitochondrial DNA.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge