Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Basic Research in Cardiology

Hypoxia-stimulated glycerol production from the isolated, perfused rat heart is mediated by non-adrenergic mechanisms.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
C A Wardle
R A Riemersma

Kata kunci

Abstrak

Factors controlling hypoxia-induced myocardial glycerol release were studied in isolated, perfused rat hearts. A constant coronary flow rate 10 ml g-1 min-1 was maintained. The perfusion buffer was gassed with O2-N2 mixtures containing 5% CO2. The O2:N2 ratios were normoxia 95:0, hypoxia 30:65, and severe hypoxia 10:85 (v/v). Glycerol and lactate release were stimulated during a 30-min period of either hypoxia or severe hypoxia but remained constant during normoxia. Tissue glycerol-3-phosphate levels were increased after 30 min hypoxia compared with after a similar period of normoxic perfusion (p < 0.01) and further increased after severe hypoxia (p < 0.01 vs hypoxia). beta-Adrenoceptors remained sensitive to isoprenaline during hypoxia, demonstrated by an increase in glycerol release over a 30-min period of isoprenaline infusion from 897 +/- 317 to 1771 +/- 307 nmol g-1 wet weight (p < 0.05). The isoprenaline-induced increase in glycerol release during hypoxia was inhibited by both atenolol and timolol (1 x 10(-5) M). In contrast, beta-adrenoceptor blockade using these drugs failed to reduce glycerol release induced by either hypoxia or severe hypoxia. Both drugs attenuated the rise in glycerol-3-phosphate during hypoxia. Chronic denervation by pretreatment with 6-hydroxydopamine reduced hypoxia-stimulated glycerol release by only 30%. Thus, a major part of hypoxia-induced glycerol release is mediated by non-adrenergic mechanisms. The results of this study bring into question the validity of the use of glycerol production during hypoxia as a reliable measure of myocardial lipolysis.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge