Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Advanced healthcare materials 2014-Oct

In situ generation of tunable porosity gradients in hydrogel-based scaffolds for microfluidic cell culture.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
Aswan Al-Abboodi
Ricky Tjeung
Pauline M Doran
Leslie Y Yeo
James Friend
Peggy Pui Yik Chan

Kata kunci

Abstrak

Compared with preformed anisotropic matrices, an anisotropic matrix that allows users to alter its properties and structure in situ after synthesis offers the important advantage of being able to mimic dynamic in vivo microenvironments, such as in tissues undergoing morphogenesis or in wounds undergoing tissue repair. In this study, porous gradients are generated in situ in a hydrogel comprising enzymatically crosslinked gelatin hydroxyphenylpropionic acid (GTN-HPA) conjugate and carboxylmethyl cellulose tyramine (CMC-TYR) conjugate. The GTN-HPA component acts as the backbone of the hydrogel, while CMC-TYR acts as a biocompatible sacrificial polymer. The hydrogel is then used to immobilize HT1080 human fibrosarcoma cells in a microfluidic chamber. After diffusion of a biocompatible cellulase enzyme through the hydrogel in a spatially controlled manner, selective digestion of the CMC component of the hydrogel by the cellulase gives rise to a porosity gradient in situ instead of requiring its formation during hydrogel synthesis as with other methods. The influence of this in situ tunable porosity gradient on the chemotactic response of cancer cells is subsequently studied both in the absence and presence of chemoattractant. This platform illustrates the potential of hydrogel-based microfluidics to mimic the 3D in vivo microenvironment for tissue engineering and diagnostic applications.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge