Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biological Chemistry 1993-Jan

Inactivation of a redox-sensitive protein phosphatase during the early events of tumor necrosis factor/interleukin-1 signal transduction.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
G R Guy
J Cairns
S B Ng
Y H Tan

Kata kunci

Abstrak

Isoforms of heat shock protein (Hsp) 27 were used as intracellular markers to study tumor necrosis factor/interleukin-1 (TNF/IL-1) regulation of protein phosphatases in primary human fibroblasts. These isoforms were rapidly phosphorylated to varying degrees when fibroblasts were treated with either TNF, IL-1, okadaic acid, calyculin A, ARS, epidermal growth factor, fibroblast growth factor, H2O2, buthionine sulfoximine, N-ethylmaleimide, diethylmaleimide, or iodoacetate. However, inhibitors of protein kinases A and C, tyrosyl protein kinases, and general protein kinases had no effect on the enhanced phosphorylation of these isoforms in TNF, IL-1, okadaic acid, or calyculin A-stimulated cells, suggesting that the activation of protein kinases by itself is insufficient to produce these changes. Isoforms of 32P-labeled Hsp27 were dephosphorylated during cold-chases with excess phosphate in the absence but not in the presence of TNF/IL-1 or inhibitors of protein phosphatases suggesting that inactivation of protein phosphatase(s) plays a role in TNF/IL-1 signal transduction. Assays of phosphatase activity of cytosolic fractions from TNF or okadaic acid treated human fibroblasts showed an inactivation of protein phosphatase activity against the 32P-labeled Hsp27 protein substrates. In vitro assays of partially purified phosphatase activity from primary human fibroblasts with Hsp27 substrate also showed the protein phosphatase activity to be inhibited by ARS. Like okadaic acid, ARS mimics TNF in inducing specific patterns of cellular protein phosphorylation. Taken together these findings are consistent with the hypothesis that a SH-dependent protein phosphatase is inactivated during the early events of TNF/IL-1 signal transduction, hence inhibitors of protein phosphatases and SH modifying compounds can mimic the early effects of TNF/IL-1 on cells.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge