Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Science and Pollution Research 2019-Jun

Metabonomic analysis of the hepatic injury suffer from hexavalent chromium poisoning in broilers.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
Yali Zhao
Hui Zhang
Xiaoxing Wu
Tianguang Zhang
Ke Shen
Lei Li
Yuxuan Peng
Khalid Mehmood
Donghai Zhou

Kata kunci

Abstrak

Chromium is used in daily life and has a wide range of functions. It plays an important role in protein synthesis and carbohydrate and lipid metabolism. Chromium is found in trivalent Cr(III) and hexavalent Cr(VI) form; Cr(III) is relatively stable and intimately participates with many phenomena of metabolisms. Whereas, Cr(VI) is toxic, which results in growth inhibition and leading to changes in components of antioxidant systems as well as secondary metabolites. However, the molecular mechanism that is involved in Cr (VI)-induced hepatotoxicity is still unclear. For this purpose, 40 chickens were randomly assigned into two groups: the normal group (feeding the basic diet and clear water), the chromium group (16%LD50, 74.24 mg/kg/day K2Cr2O7 ). The samples were subjected to pathological examination and UHPLC-QE-MS non-target metabolomics method for metabolomics analysis of broiler liver using principal component analysis (PCA) and partial least squares discriminant analysis (OPLS-DA). The central venous cells of the broiler liver in the chromium poisoning group showed turbidity and flaky necrosis, nuclear condensation, nuclear rupture, and even nuclear dissolution. The differential metabolite analysis between the chromium poisoning and the control group showed that 32 differential metabolites were upregulated and 15 were downregulated in positive ion mode. Whereas,17 differential metabolites were downregulated, and 35 were downregulated in negative ion mode (P ≤ 0.05). The potential marker substances are oleic acidamide, farnesylacetone, betaine, taurine, choline, and galactinol. Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways showed that the lipid metabolism, carbohydrate metabolism, nucleotide metabolism, amino acid metabolism, energy metabolism, membrane transport, digestive system, and nervous system were the most important metabolic pathways in the liver. This study provides a theoretical basis for the future understanding of the pathogenesis of chromium poisoning and a new insight of the subsequent molecular mechanism of chromium hepatotoxicity.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge